
AUSTRIAN JOURNAL OF STATISTICS

Volume 35 (2006), Number 2&3, 143–155

Regression Model Fitting for the
Interval Censored 1 Responses

Hira L. Koul and Tingting Yi
Michigan State University, U.S.A.

Abstract: In the interval censored case 1 data, an event occurrence time is
unobservable, but one observes an inspection time and whether the event has
occurred prior to this time or not. Such data is also known as the interval
censored case 1 data. It is of interest to assess the effect of a covariate on the
event occurrence time variable. This note constructs tests for fitting a class
of parametric regression models to the regression function of the log of the
event occurrence time variable when the data are interval censored case 1
and when the error distribution is known. These tests are based on a certain
martingale transform of a marked empirical process. They are asymptotically
distribution free in the sense that their asymptotic null distributions neither
depends on the null model nor on any of the distributions of the covariate, the
inspection time or error variables. However, the test statistic itself depends on
the error distribution. Some simulation studies assessing some finite sample
level and power behavior of some of the proposed tests are also given.

Keywords: Marked Empirical Process.

1 Introduction
The focus of this paper is to develop tests of lack-of-fit of a regression model when the re-
sponse variable is subject to interval censoring case 1. This kind of data occurs frequently
in clinical trials and longitudinal studies. For example, a patient is given a diagnostic test
to detect whether the patient has the disease or not. In this case the time of the onset of the
disease Y 0 is un-observable. If the disease is found to be present then one only knows that
Y 0 ≤ T 0, where T 0 is the time the test is administered. In other words in this situation
one observes (δ, T 0) where δ := I(Y 0 ≤ T 0), with I(A) denoting the indicator of the
event A. This type of data is also known as the current status data.

Hoel and Walburg (1972), Finkelstein and Wolfe (1985), Finkelstein (1986), Diamond
et al. (1986), Diamond and McDonald (1991), Keiding (1991), among others, contain
several examples of interval censoring case 1 data sets from clinical, tumorigenicity and
demographic studies. The recent review article by Jewell and Laan (2004) contains some
additional applications to health related studies.

Now suppose one is interested in assessing the effect of a covariate Z on the time of
the onset of the disease, e.g., age of the patient. One way to proceed is to use the classical
regression analysis where one regresses Y := log Y 0 on Z but one observes only (δ, T )
with T = log T 0. But then the question of which regression model to choose from a
possible class of given models becomes relevant.

More precisely, assume Y has finite expectation and let µ(z) := E(Y |Z = z) denote
the regression function. Let M = {mθ(z) : z ∈ R , θ ∈ Θ} be a given parametric family
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of functions, where Θ is a subset of the q-dimensional Euclidean space Rq. This class of
functions represents a possible class of regression models and the problem of interest is
to test the hypothesis

H0 : µ(z) = mθ0(z) , for some θ0 ∈ Θ , ∀z ∈ R ,

based on n i.i.d. observations Xi = (δi, Ti, Zi), 1 ≤ i ≤ n on (δ, T, Z), where δ = I(Y ≤
T ). The alternative of interest is that H0 is not true.

In the case Yi’s are fully observable tests for the lack-of-fit hypothesis H0 have been
based on the marked residual empirical process

1√
n

n∑
i=1

Yi −mθn(Zi)

σ̂n(Zi)
I(Zi ≤ z) , z ∈ R , (1)

where θn is a
√

n-consistent estimator of θ0 under the null hypothesis, and σ̂2
n(z) is a

consistent estimator of the conditional variance of Y − mθ(Z), given Z = z, under
H0, cf., An and Cheng (1991), Stute (1997), and Stute et al. (1998), among others.
The latter paper shows that the tests based on its innovation martingale transforms are
asymptotically distribution free.

This paper develops an analog of this transformation for the current status response
data when the distribution Z is not known but that of the error variable and T is known.
Even in this case no rigorous testing procedure is available in the literature at the present
time. The next section discusses the main results about testing a simple hypothesis, the
composite hypothesis H0 and the needed assumptions. We also briefly discuss a modifi-
cation of the proposed test when the distribution of T is not known. Section 3 contains a
simulation study illustrating the finite sample behavior of level and power of some pro-
posed tests.

2 Main Results
In this section we shall construct an analog of the process given at (1) that is suitable for
the current status data and that will be useful for testing simple and composite hypotheses
discussed in subsections 2.1 and 2.2, respectively.

Since the Yi’s are not observable, we need to replace them in (1) by Ŷi, a copy of

Y ∗ = E(Y |δ, T, Z) = δE(Y |δ, T, Z) + (1− δ)E(Y |δ, T, Z) . (2)

To proceed further, let F denote the d.f. of the error ε := Y − µ(Z). Assume that

F is continuous, 0 < F (y) < 1, for all y ∈ R, Eε = 0, Eε2 < ∞. (3)
ε is conditionally independent of T , given Z, T and ε are independent of Z.

Then, with F̄ := 1− F , we obtain,

E(Y |δ = 1, T = t, Z = z) =

∫ t

−∞ ydF (y − µ(z))

F (t− µ(z))
(4)
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=

∫ t−µ(z)

−∞ ydF (y)

F (t− µ(z))
+ µ(z) ,

E(Y |δ = 0, T = t, Z = z) =

∫∞
t

ydF (y − µ(z))

1− F (t− µ(z))

=

∫∞
t−µ(z)

ydF (y)

F̄ (t− µ(z))
+ µ(z) , t, z ∈ R .

Let

R(d, t, z) := E(Y |δ = d, T = t, Z = z)− µ(z) ,

F̄ (y) := 1− F (y) , L(y) := F (y)F̄ (y) ,

ν(y) :=

∫ y

−∞
xdF (x) , y ∈ R ,

σ2(z) := V ar(R(δ, T, Z)|Z = z) , d = 0, 1; t, z ∈ R .

From (2), (4), and the fact ν(∞) = 0, we obtain

R(d, t, z) = d

∫ t−µ(z)

−∞ ydF (y)

F (t− µ(z))
+ (1− d)

∫∞
t−µ(z)

ydF (y)

F̄ (t− µ(z))

= ν(t− µ(z))

[
d

F (t− µ(z))
− 1− d

F̄ (t− µ(z))

]

=
ν(t− µ(z))[d− F (t− µ(z))]

L(t− µ(z))
.

By the conditional independence of ε and T , given Z, and the independence of T and Z,
E{R(δ, T, Z)|Z} = 0 and

0 < σ2(z) = E
{

ν2(T − µ(z))

L(T − µ(z))

}
< ∞ , ∀z ∈ R ,

Eσ2(Z) < ∞ , by the assumption Eε2 < ∞.

The entities R(δi, Ti, Zi)/σ(Zi) play the role of the standardized residuals in the current
status data.

2.1 Tests of a Simple Hypothesis
To test the simple hypothesis H̃0: µ(z) = µ0(z), z ∈ R, where µ0 is a known function,
the analogue of the process (1) suitable here would be

V 0
n (z) :=

1√
n

n∑
i=1

R0(δi, Ti, Zi)

σ0(Zi)
I(Zi ≤ z) , z ∈ R ,

where R0, σ0 are the above R, σ functions with µ replaced by µ0.
Let Ψ and G denote the d.f.’s of T and Z, respectively, and B denote the stan-

dard Brownian motion on [0,∞). Using an argument similar to the one used in Stute
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(1997), it can be verified that under (3) and H̃0, V 0
n converges weakly to B ◦ G, in

D[−∞,∞] and uniform metric. Thus, for example the test that would reject H̃ whenever
Kn := supz∈R |V 0

n (z)| > bα, where bα is the 100(1 − α)th percentile of the distribution
of sup0≤t≤1 |B(t)|, would have the asymptotic size α.

Consistency. Let µ1(z) be an alternative regression function and consider the problem of
testing the simple hypothesis H̃: µ(z) = µ0(z) against the alternative H̃1: µ(z) = µ1(z),
for all z. Let

w(t, z) :=
1

σ0(z)

ν(t− µ0(z))

L(t− µ0(z))
,

∆(t, z) := F (t− µ1(z))− F (t− µ0(z)) , t, z ∈ R .

Then one can rewrite V 0
n (z) = V 1

n (z) + n1/2Dn(z), where

V 1
n (z) :=

1√
n

n∑
i=1

w(Ti, Zi) [δi − F (Ti − µ1(Zi))] I(Zi ≤ z)

Dn(z) :=
1

n

n∑
i=1

w(Ti, Zi)∆(Ti, Zi) I(Zi ≤ z) .

Let P1 and E1 signify the probability measure and expectation under H1. Observe
that the distributions of T and Z are not affected by the choice of the regression function.
Assume that F and µ1 satisfy

(a) E (w(T, Z)|∆(T, Z)|) < ∞ , (b) G(µ1(Z) 6= µ0(Z)) > 0 . (5)

In view of this fact, (5(b)), and F strictly increasing on R we obtain that EDn(z) =
Ew(T, Z)∆(T, Z) I(Z ≤ z) 6= 0, for at least one z. Hence, by the classical Glivenko-
Cantelli type argument, supz |Dn(z)| → supz |Ew(T, Z)∆(T, Z)I(Z ≤ z)|, a.s., which
is not equal to zero.

Next, assume additionally that µ1 satisfies

0 < E1w
2(T, Z) [δ − F (T − µ1(Z))]2 < ∞ . (6)

Let K(z) := E1w
2(T, Z) [δ − F (T − µ1(Z))]2 I(Z ≤ z). Then, E1V

1
n (z) ≡ 0, and a

direct calculation shows that for all −∞ ≤ z1 < z < z2 ≤ ∞,

E1

{
(V 1

n (z)− V 1
n (z1))(V

1
n (z2)− V 1

n (z))
}2

=
n− 1

n
[K(z)−K(z1)][K(z2)−K(z)] ≤ (K(z2)−K(z1))

2 .

This fact, in view of Theorem 15.6 in (Billingsley, 1968), implies that V 1
n converges

weakly to B(K) in D[−∞,∞] and uniform metric.
Summarizing, if F is strictly increasing on R, then the test that rejects H̃: µ(z) =

µ0(z) for all z, whenever supz |V 0
n (z)| ≥ bα is consistent against all those alternatives

µ1(z) that satisfy (5) and (6).
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By the Cauchy-Schwarz inequality applied twice, once to the conditional expectation,
given Z, and once to the expectation with respect to the distribution of Z, it can be seen
that (5)(a) is implied by

E
∆2(T, Z)

L(T − µ0(Z))
< ∞ , (7)

This condition in turn is satisfied for example when the support of F is R and that of
T − µ0(Z) is an interval (a, b), −∞ < a < b < ∞, since in this case the left hand side
of (7) is bounded above by {F (a)F̄ (b)}−1. In this case we also have the condition (6)
satisfied, for the integral in (6) equals

E
ν2(T − µ0(Z))L(T − µ1(Z))

σ2
0(Z)L2(T − µ0(Z))

≤ {4F (a)F̄ (b)}−1 .

Another example where the condition (7) holds is when F is N(0, σ2) distribution func-
tion and T is a N(0, τ 2) random variable, with σ > τ .

2.2 Tests for H0

To discuss the more interesting problem of testing H0, we proceed as follows. For con-
venience, let Pθ denote the joint distribution of (δ, T, Z) when µ = mθ, and Eθ and V arθ

denote the corresponding mean and variance operations. Let Rθ, σθ stand for R, σ when
µ = mθ and θn denote a

√
n-consistent estimator of θ0, under H0, based on (δi, Ti, Zi);

1 ≤ i ≤ n. See Section 3 below on how to obtain such an estimator of θ0. Tests of H0

will be based on the process Ṽn(z) := Vn(z, θn), where

Vn(z, θ) =
1√
n

n∑
i=1

Rθ(δi, Ti, Zi)

σθ(Zi)
I(Zi ≤ z) , z ∈ R , θ ∈ Θ .

To analyze asymptotic behavior of Ṽn, we need to make the following assumptions.
√

n‖θn − θ0‖ = Op(1) , (Pθ0) (8)
F has zero mean finite variance and a continuous density f (9)
mθ is differentiable in a neighborhood of θ0 with its q × 1 vector (10)
of first derivatives ṁθ0 , such that ∀ 0 < b < ∞

sup
1≤i≤n , n1/2‖θ−θ0‖≤b

n1/2|mθ(Zi)−mθ0(Zi)− (θ − θ0)
′ṁθ0(Zi)|

σθ0(Zi)
= op(1) .

sup
1≤i≤n , n1/2‖θ−θ0‖≤b

|σθ0(Zi)

σθ(Zi)
− 1| = op(1) . (11)

E
∥∥∥ṁθ0(Z)

σθ0(Z)

∥∥∥
2

< ∞ . (12)

E
|ν(T −mθ0(Z))| f(T −mθ0(Z))

L(T −mθ0(Z))
< ∞ . (13)
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Now, let Ṙθ, σ̇θ denote the vectors of the first derivatives of Rθ, σθ with respect to
θ, and ṙθ a similar entity for the ratio rθ := Rθ/σθ. The existence of these entities is
guaranteed by the assumptions (9) and (10). Direct calculations show that under these
assumptions, for θ in a neighborhood of θ0 and with x = t−mθ(z),

Ṙθ(d,t,z) =
[−xf(x)[d−F (x)]+ν(x)f(x)

L(x)
+ν(x)[d−F (x)]

f(x)(1−2F (x))

L2(x)

]
ṁθ(z) ,

ṙθ(d,t,z) :=
∂

∂θ

(Rθ(d, t, z)

σθ(z)

)
=

Ṙθ(d, t, z)

σθ(z)
− σ̇θ

σθ

(z)
Rθ(d, t, z)

σθ(z)
.

Let, for a z ∈ R,

hθ(z) :=
1

σθ(z)
EθṘθ(δ, T, z) , `θ(z, Ψ) := E

(
ν(T −mθ(z)) f(T −mθ(z))

L(T −mθ(z))

)
.

Observe that because Rθ0(δ, T, Z) is conditionally centered under H0, given Z, we obtain
Eθ0 ṙθ0(δ, T, z) = hθ0(z). Also, by the assumed independence,

E
(
Ṙθ0(δ, T, Z)|T = t, Z = z

)
=

ν(t−mθ0(z)) f(t−mθ0(z))

L(t−mθ0(z))
ṁθ0(z) ,

Eθ0Ṙθ0(δ, T, z) = `θ0(z, Ψ)ṁθ0(z) , hθ0(z) = `θ0(z, Ψ)
ṁθ0(z)

σθ0(z)
.

Next, let

Dθ(z) := Eθ

{Ṙθ(δ, T, Z)

σθ(Z)
I(Z ≤ z)

}
, z ∈ R , θ ∈ Θ .

Note that by (13), supz |Dθ0(z)| < ∞. By the independence of T and Z,

Dθ0(z) =

∫ z

−∞
hθ0(u)dG(u) = Eθ0 ṙθ0(δ, T, Z) I(Z ≤ z) , z ∈ R . (14)

Now, rewrite

Ṽn(z) = Vn(z, θ0)− n1/2(θn − θ0) n−1

n∑
i=1

ṙθ0(δi, Ti, Zi) I(Zi ≤ z)

−n−1/2

n∑
i=1

[rθn − rθ0 − (θn − θ0)
′ṙθ0 ](δi, Ti, Zi) I(Zi ≤ z) .

The model assumptions and (9)-(13) imply that

max
1≤i≤n

∣∣∣n1/2[rθn − rθ0 − (θn − θ0)
′ṙθ0 ](δi, Ti, Zi)

∣∣∣ = op(1) , (H0) .

A Glivenko-Cantelli type argument and the LLN’s implies that under H0,

sup
z∈R

∣∣∣n−1

n∑
i=1

ṙθ0(δi, Ti, Zi) I(Zi ≤ z)−Dθ0(z)
∣∣∣ = op(1) .
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These facts and a routine argument yield the following

Theorem 1. Under the assumptions (3), (8) – (13), we obtain that uniformly in z ∈ R,
under Pθ0 ,

Ṽn(z) = Vn(z, θ0)− n1/2(θn − θ0)
′Dθ0(z) + op(1) .

Moreover, Vn(·, θ0) =⇒ B(G(·)), in D[−∞,∞], with respect to the uniform metric.
Next, we develop an analog of the linear transformation of Stute et al. (1998). For any

matrix D, let D′ denote its transpose, and let

Aθ0(z) =

∫ ∞

z

hθ0(u)hθ0(u)′dG(u) ,

=

∫ ∞

z

`2
θ0

(u, Ψ)
ṁθ0(u)ṁθ0(u)′

σ2
θ0

(u)
dG(u) , z ∈ R .

Note that this is a nonnegative definite q × q-matrix. But we shall assume that Aθ0(z0)
is nonsingular for some z0 ∈ R. Then Aθ0(z) is positive definite for all z ≤ z0. Write
A−1

θ0
(z0) for the inverse (Aθ0(z0))

−1 and define the linear functional transform

Q(ϕ)(z) = ϕ(z)−
∫ z

−∞
hθ0(z1)

′A−1
θ0

(z1)

[∫ ∞

z1

hθ0(z2)ϕ(dz2)

]
dG(z1) , z ≤ z0 .

When we apply Q to Brownian motion B ◦ G, the inner integral needs to be interpreted
as a stochastic integral.

Observe that (14) readily implies Q(D′
θ0

U) = 0, for all U ∈ Rq. Arguing as in Stute
et al. (1998), one can also verify that Q maps B ◦ G to B ◦ G. Consequently, we have
Q(B ◦G + D′

θ0
U) = Q(B ◦G) = B ◦G, for any U ∈ Rq.

These observations together with Theorem 1 suggest that under H0, QṼn would also
converge weakly to B ◦ G. But the transformation Q depends on the unknown param-
eters θ0, Ψ and G. Let hn, An, and σn denote the hθ0 , Aθ0 , and σθ0 after θ0, Ψ, and G
are replaced by θn, and the empirical distribution functions Ψn of Ti’s and Gn of Zi’s,
respectively, in there. Define the estimate of Q to be

Qn(ϕ)(z) = ϕ(z)−
∫ z

−∞
hn(z1)

′A−1
n (z1)

[∫ ∞

z1

hn(z2)ϕ(dz2)

]
dGn(z1) , z ≤ z0 .

To verify the weak convergence of QnṼn we need the following additional conditions
on hθ. For every k < ∞,

sup
n1/2‖θ−θ0‖≤k , 1≤i≤n

‖hθ(Zi)− hθ0(Zi)‖ = op(1) , (15)

E‖hθ0+n−1/2t2(Z)− hθ0+n−1/2t1(Z)‖2 ≤ C ‖t2 − t1‖2 ,

for all t1, t2 in the ball {t ∈ Rq ; ‖t‖ ≤ k}, and for some constant C which may depend on
θ0 and F ,Ψ, and G. Using the methods of proof of Koul and Stute (1999), one can verify
that under the above assumed conditions and under H0, QnṼn =⇒ B ◦ G in D[−∞, z0]
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and uniform metric. Hence, tests based on any continuous functional of this process will
be asymptotically distribution free

Note that because hθ involves ṁθ and σθ, the condition (15) imposes additional smooth-
ness conditions on these functions. As an example, if F is a normal distribution and Ψ
has a Lipschitz Lebegue density then (15) is impled by

sup
n1/2‖θ−θ0‖≤k , 1≤i≤n

‖ṁθ(Zi)− ṁθ0(Zi)‖ = op(1) ,

E‖ṁθ0+n−1/2t2(Z)− ṁθ0+n−1/2t1(Z)‖2 ≤ C ‖t2 − t1‖2 .

3 Estimation of θ

In order to apply the above results, it is important to have a n1/2-consistent estimator of θ0

under H0. (Li and Zhang, 1998) constructed M-estimators of the regression coefficients
in a linear regression model with interval censored data and when the error distribution
function is unknown. Since here F is assumed to be known and since their estimator is
computationally much more involved, one may instead use the conditional least square
estimator defined by

θ̂lse = argminθ∈Θ

n∑
i=1

[δi − F (Ti −mθ(Zi))]
2 .

Assume that F has a continuously differentiable density f and

Σθ0 := E
(
f 2(T −mθ0(Z)) ṁθ0(Z)ṁθ0(Z)′

)

is positive definite. In addition assume that ṁθ is continuously differentiable with the
matrix of derivatives m̈θ0(z) satisfying ‖m̈θ0(z)‖ ≤ Mθ0(z), with

∫
Mθ0(z)dG(z) < ∞.

Then using the classical Cramér type of argument one can verify that

n
1
2 (θ̂lse−θ0)=Σ−1

θ0
n−

1
2

n∑
i=1

[δi−F (Ti−mθ0(Zi))]f(Ti−mθ0(Zi))ṁθ0(Zi)+op(1) , (Pθ0) .

Consequently, under H0,

n1/2(θ̂lse − θ0) → Nq(0, Ω0) ,

Ω0 := Σ−1
θ0

M0Σ
−1
θ0

,

M0 := E
{

(FF̄f 2)(T −mθ0(Z)) ṁθ0(Z)ṁθ0(Z)′
}

.

See, e.g., Liese and Vajda (2004) for a general method of proving asymptotic normality
in nonlinear regression models.
Unknown Distribution of T . The only place where the distribution function of T appears
in the process Vn is via the conditional variance σ2

θn
(Zi). An obvious estimate of this entity

is

s2
n(Zi) := n−1

n∑
j=1

ν2(Tj −mθn(Zi))

L(Tj −mθn(Zi))
.
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Then the tests of H0 can be based on the process V̂n, the analog of Ṽn where σθn(Zi) is
replaced by sn(Zi). The test of H̃0 can be modified similarly. The asymptotic properties
of these tests will be similar to those of the above, but are not discussed here.
Unknown F . In principle the above testing procedure can be adapted to the case when
F is unknown by replacing F in Ṽn and Qn by its nonparametric conditional maximum
likelihood estimator (NPMLE), given Zi, 1 ≤ i ≤ n. This estimator is defined to be

argmaxF

n∑
i=1

[
δi log F (Ti −mθ̂(Zi)) + (1− δi) log F̄ (Ti −mθ̂(Zi))

]
,

where θ̂ is a n1/2-consistent estimator of θ0 under H0. Such an estimator of F can be
computed by using the techniques described in Ayer et al. (1955) or Groeneboom and
Wellner (1992). However, the asymptotic properties like the weak convergence under H0

of the so modified Ṽn appears to be intractable at the present time. Such properties are
also not available for the NPMLE of F even when there are no nuisance parameters to be
estimated.

There also does not appear to be any readily available n1/2-consistent estimator of θ
for a general nonlinear mθ when F is unknown. For linear mθ, one could use estimators
proposed by Li and Zhang (1998). The results of Klein and Spady (1993) may be found
useful for a general nonlinear mθ.

4 A Simulation

Here we report results of a finite sample simulation. For simplicity we took M to be
simple linear regression model. Thus q = 1 and mθ(z) = θz, θ ∈ R. In this case then
several entities simplify as follows. Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) denote the ordered Zi’s
and T(i)’s, δ(i)’s denote the corresponding Ti’s and δi’s. Also, let `nj(z) ≡ `θn(Z(j), Ψn),
Rnj := Rθn(δ(j), T(j), Z(j)), σnj := σn(Z(j)), and Anj := An(Z(j)), where now

An(z) :=
1

n

n∑
i=1

`2
n(Z(i))

σ2
n(Z(i))

Z2
(i) I(Z(i) ≥ z) .

Then

QnṼn(z) = Ṽn(z)− 1

n

n∑
i=1

Z(i)`ni

Aniσni

1

n1/2

n∑
j=1

Z(j)`njRnj

σ2
nj

I(Z(j) ∧ z ≥ Z(i))

=
1

n1/2

n∑
j=1

{
I(Z(j) ≤ z)− 1

n

j∑
i=1

Z(i)Z(j)`ni`nj

Aniσniσnj

I(z ≥ Z(i))
}Rnj

σnj

.

Here Aθ0(z) and An(z) are positive definite for all z ∈ R and the statistics

Kn := sup
z∈R

|V 0
n (z)| , K̂n := sup

z∈R
|QnṼn(z)|
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Table 1: Empirical sizes and powers of the Kn test, F = F1 = DE(0, β)
α = 0.1 α = 0.05 α = 0.01

a β n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
1 0.083 0.095 0.038 0.053 0.018 0.021

0 2 0.090 0.091 0.047 0.044 0.017 0.018
3 0.097 0.115 0.052 0.040 0.031 0.020
1 0.350 0.574 0.231 0.433 0.147 0.340

1 2 0.205 0.342 0.135 0.246 0.075 0.172
3 0.146 0.242 0.082 0.170 0.046 0.102
1 0.747 0.968 0.644 0.939 0.537 0.904

2 2 0.508 0.792 0.388 0.691 0.264 0.591
3 0.345 0.576 0.241 0.458 0.159 0.349

are well defined. The proposed test rejects H̃ (H0) whenever Kn > bα, K̂n > bα, where
bα is the 100(1− α)th percentile of the distribution of sup0≤t≤1 |B(t)|. Note that

Kn =
1√
n

max
1≤j≤n

∣∣∣
j∑

k=1

R0(δ(k), T(k), Z(k))

σ0(Z(k))

∣∣∣ ,

K̂n =
1√
n

max
1≤k≤n

∣∣∣
k∑

j=1

[
1− 1

n

j∑
i=1

Z(i)Z(j)`ni`nj

Aniσniσnj

]Rnj

σnj

∣∣∣ .

In our simulations we generated Zi’s from the uniform distribution on the interval
[0, 1] and εi’s independently from following three densities.

DE(0, β) : f1(x) :=
1

2β
e−|x|/β ;

Logistic(0, β) : f2(x) :=
e−x/β

β(1 + e−x/β)2
;

N(0, σ2) : f2(x) :=
1√
2πσ

e−x2/σ2

, x ∈ R .

Finally, Yi’s were generated according to the model Yi = 3Zi + aZ2
i + εi, 1 ≤ i ≤ n.

The censoring variables Ti’s were generated from the uniform distribution on the interval
[0, 3]. Hence H̃: µ(z) = 3z and H0: µ ∈M hold with θ0 = 3 if and only if a = 0.

We computed the empirical sizes and powers for different values of a and different er-
ror distributions. The results represent the Monte Carlo levels when a = 0 and the Monte
Carlo powers when a 6= 0. The test Kn was simulated for the sample n = 100, 200 at all
three error distributions while K̂n was simulated for n = 200, 400 at only the two error
distribution functions, F = F1, F = F3. All simulations are based on 1000 replications.
The entries in the tables are obtained as the #(Kn > bα)/1000 and #(K̂n > bα)/1000,
where the bα’s are obtained from the distribution of {sup |B(t)|; 0 ≤ t ≤ 1}. In particular
b0.1 = 1.96, b0.05 = 2.2414, and b0.025 = 2.5.

From these simulations, we see that the empirical size is close to the nominal level for
the samples sizes of 200 and larger when α = .1, .05, while for α = .01 there is more
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Table 2: Empirical sizes and powers of the Kn test, F = F2 = Logistic(0, β)
α = 0.1 α = 0.05 α = 0.01

a β n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
1 0.088 0.095 0.043 0.043 0.022 0.021

0 2 0.092 0.098 0.046 0.048 0.021 0.022
3 0.101 0.079 0.047 0.040 0.021 0.021
1 0.262 0.488 0.162 0.348 0.108 0.252

1 2 0.134 0.237 0.090 0.150 0.054 0.104
3 0.131 0.149 0.077 0.085 0.045 0.052
1 0.641 0.922 0.527 0.869 0.406 0.784

2 2 0.327 0.568 0.221 0.455 0.146 0.341
3 0.209 0.348 0.130 0.242 0.083 0.166

Table 3: Empirical sizes and powers of the Kn test, F = F3 = Normal(0, σ2)
α = 0.1 α = 0.05 α = 0.01

a σ n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
1 0.095 0.083 0.052 0.035 0.026 0.019

0 2 0.097 0.085 0.041 0.046 0.020 0.020
3 0.091 0.117 0.041 0.061 0.020 0.036
1 0.416 0.742 0.313 0.630 0.233 0.053

1 2 0.208 0.385 0.135 0.270 0.089 0.187
3 0.155 0.260 0.085 0.173 0.045 0.107
1 0.890 0.987 0.808 0.976 0.722 0.964

2 2 0.581 0.870 0.472 0.782 0.363 0.686
3 0.363 0.639 0.265 0.528 0.186 0.423

Table 4: Empirical sizes and powers of the K̂n test, F = F1 = DE(0, β)
α = 0.1 α = 0.05 α = 0.01

a β n = 200 n = 400 n = 200 n = 400 n = 200 n = 400
1 0.089 0.109 0.037 0.054 0.016 0.024

0 2 0.058 0.114 0.025 0.059 0.012 0.032
3 0.077 0.100 0.035 0.047 0.016 0.023
1 0.106 0.169 0.051 0.089 0.017 0.050

1 2 0.080 0.135 0.040 0.067 0.019 0.040
3 0.081 0.122 0.042 0.058 0.021 0.025
1 0.177 0.477 0.091 0.301 0.042 0.171

3 2 0.191 0.355 0.098 0.233 0.050 0.144
3 0.161 0.286 0.082 0.175 0.042 0.109
1 0.217 0.534 0.090 0.343 0.042 0.217

5 2 0.274 0.548 0.165 0.401 0.082 0.263
3 0.231 0.470 0.135 0.323 0.080 0.203
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Table 5: Empirical sizes and powers of the K̂n test, F = F3 = N(0, σ2)
α = 0.1 α = 0.05 α = 0.01

a σ n = 200 n = 400 n = 200 n = 400 n = 200 n = 400
1 0.054 0.104 0.020 0.049 0.006 0.025

0 2 0.057 0.101 0.025 0.052 0.009 0.017
3 0.072 0.152 0.029 0.081 0.013 0.033
1 0.058 0.107 0.022 0.048 0.008 0.017

1 2 0.127 0.171 0.065 0.093 0.028 0.057
3 0.119 0.229 0.052 0.123 0.026 0.077
1 0.225 0.509 0.124 0.344 0.056 0.204

3 2 0.211 0.472 0.122 0.290 0.064 0.195
3 0.195 0.344 0.113 0.219 0.056 0.124
1 0.305 0.619 0.169 0.448 0.087 0.302

5 2 0.288 0.541 0.019 0.414 0.110 0.291
3 0.243 0.396 0.157 0.279 0.091 0.192

variability, depending on the tails of the error distribution. In particular the scale param-
eters σ and β appear to have influence on the Monte Carlo level. Under the alternatives,
the power decreases as β or σ increases, while it increases as a increases and sample size
increases.
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