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Abstract: The problem of boundary effects for nonparametric kernel regres-
sion is considered. We will follow the problem of bandwidth selection for
Gasser-Müller estimator especially. There are two ways to avoid the difficul-
ties caused by boundary effects in this work. The first one is to assume the
circular design. This idea is effective for smooth periodic regression func-
tions mainly. The second presented method is reflection method for kernel of
the second order. The reflection method has an influence on the estimate out-
side edge points. The method of penalizing functions is used as a bandwidth
selector. This work compares both techniques in a simulation study.
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1 Basic Terms and Definitions
Consider a standard regression model of the form

Yi = m(xi) + εi , i = 1, . . . , n , n ∈ N ,

where m is an unknown regression function, xi are design points, Yi are measurements
and εi are independent random variables for which

E(εi) = 0 , var(εi) = σ2 > 0 , i = 0, . . . , n .

The aim of kernel smoothing is to find suitable approximation m̂ of an unknown function
m.

In next we will assume the design points xi are equidistantly distributed on the interval
[0, 1], that is xi = (i− 1)/n, i = 1, . . . , n.

Lip[a, b] denotes the class of continuous functions satisfying the inequality

|g(x)− g(y)| ≤ L|x− y| , ∀x, y ∈ [a, b] , L > 0 , L is a constant.

Definition. Let κ be a nonnegative even integer and assume κ ≥ 2. The function K ∈
Lip[−1, 1], support(K) = [−1, 1], satisfying the following conditions

1. K(−1) = K(1) = 0

2.
∫ 1

−1
xjK(x) dx =





0, 0 < j < κ
1, j = 0
βκ 6= 0, j = κ,

is called a kernel of order κ and a class of all these kernels is marked S0κ. These kernels
are used for an estimation of the regression function (see Wand and Jones, 1995). Let
K ∈ S0κ, set Kh(·) = 1

h
K( ·

h
), h ∈ (0, 1). A parameter h is called a bandwidth.
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2 Kernel Estimation of the Regression Function
Commonly used non-parametric methods for estimating m(x) are the kernel estimators
Gasser–Müller estimators (1979)

m̂GM(x; h) =
n∑

i=1

Yi

∫ si

si−1

Kh(t− x) dt ,

where
si =

xi + xi+1

2
, i = 1, . . . , n− 1 , s0 = 0 , sn = 1 .

The kernel estimators can be generally expressed as

m̂(x; h) =
n∑

i=1

Wi(x)Yi ,

where the weights Wi(x) correspond to the weights of the estimators m̂GM .
The quality of the estimated curve is affected by the smoothing parameter h, which is

called a bandwidth. The optimal bandwidth considered here is hopt, the minimizer of the
average mean squared error

(AMSE) Rn(h) =
1

n
E

n∑
i=1

(m(xi)− m̂(xi; h))2 .

Let K ∈ S0κ. There exist many estimators of this error function, which are asymptotically
equivalent and asymptotically unbiased (see Chiu, 1991, 1990; Härdle, 1990). Most of
them are based on the residual sum of squares

(RSS) RSSn(h) =
1

n

n∑
i=1

[Yi − m̂(xi; h)]2 .

We will use the method of penalizing functions (see Koláček, 2005, 2002) for choosing
the smoothing parameter. So the prediction error RSSn(h) is adjusted by some penalizing
function Ξ(n−1Wi(xi)), that is, modified to

R̂n(h) =
1

n

n∑
i=1

[m̂(xi; h)− Yi]
2 · Ξ(n−1Wi(xi)) .

The reason for this adjustment is that the correction function Ξ(n−1Wi(xi)) penalizes
values of h too low. For example Rice (see Rice, 1984) considered

ΞR(u) =
1

1− 2u
.

This penalizing function will be used.
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Figure 1: Demonstration of boundary effects.

3 Boundary Effects
In the finite sample situation, the quality of the estimate in the boundary region [0, h] ∪
[1− h, 1] is affected since the effective window is [x− h, x + h] 6⊂ [0, 1] so, that the finite
equivalent of the moment conditions on the kernel function does not apply any more.
There are several methods to avoid the difficulties caused by boundary effects.

3.1 Cyclic Model
One of possible ways to solve problem of boundary effects is to use a cyclic design. That
is, suppose m(x) is a smooth periodic function and the estimate is obtained by applying
the kernel on the extended series Ỹi, where Ỹi+kn = Yi for k ∈ Z. Similarly xi = (i−1)/n,
i ∈ Z.

In the cyclic design, the kernel estimators can be generally expressed as

m̂(x; h) =
2n∑

i=−n+1

Wi(x)Ỹi ,

where the weights Wi(x) correspond to the weights of estimators m̂GM

Wi(x) =

∫ si

si−1

Kh(t− x)dt,

where

si =
xi + xi+1

2
, i = −n + 1, . . . , 2n− 1 , s−n = −1 , s2n = 2 .
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Let us define a vector www := (w1, . . . , wn), where

wi = W1(xi − 1) + W1(xi) + W1(xi + 1) .

Let h ∈ (0, 1), K ∈ S0κ, i ∈ {1, . . . , n}. Then we can write m̂(xi; h) as a discrete cyclic
convolution of vectors www and YYY .

m̂(xi; h) =
n∑

k=1

w<i−k>nYk , (1)

where < i− k >n marks (i− k)mod n. We write

m̂̂m̂m = www ~ YYY ,

where m̂̂m̂m = (m̂(x1; h), . . . , m̂(xn; h)).
As the bandwidth selector the method of Rice’s penalizing function will be used. In

the case of cyclic model, we can simplify the error function R̂n(h), because the weights
Wi(xi) are independent on i. Set

I(h) :=

∫ 1/2n

−1/2n

Kh(x)dx .

Then we can express R̂n(h) as

R̂n(h) =
n

n− 2 I(h)
RSSn(h) (2)

and the estimate ĥopt of optimal bandwidth is defined as

ĥopt = arg min
h∈(0,1)

R̂T (h) .

3.2 Reflection Technique
Let’s have observations (xi, Yi), i = 1, . . . , n, regression model described in Section 1
and design points xi ∈ [0, 1] such that

0 = a ≤ x1 ≤ · · · ≤ xn ≤ b = 1 .

Now, technique for design points reflection will be discussed. We may begin by estimating
the function m at edge points a and b with corresponding bandwidth for these points, ha

and hb, and edge kernels KL, KR ∈ S02:

m̂(a) =
1

ha

n∑
i=1

Yi

∫ si

si−1

KL

(
a− u

ha

)
du ,

m̂(b) =
1

hb

n∑
i=1

Yi

∫ si

si−1

KR

(
b− u

hb

)
du .



J. Koláček and J. Poměnková 285

For the bandwidth choice ha, hb and the edge kernels KL, KR for m̂(a), m̂(b) see Poměnková
(2005). Further data reflection will be made. We proceed from original data set (xi, Yi),
i = 1, . . . , n. For obtaining left mirrors point (a, m̂(a)) and following relations

xLi = 2a− xi ,

YLi = 2m̂(a)− Yi

are used. For obtaining right mirrors point (b, m̂(b)) and following relations

xRi = 2b− xn−i+1 ,

YRi = 2m̂(b)− Yn−i+1

are used. Then original data set (xi, Yi) is connected with left mirrors (xLi, YLi) and with
right mirrors (xRi, YRi). By this connection new data set which is called pseudodata and
denoted as (xj, Y j), j = 1, . . . , 3n.

How to find the bandwidth for an estimate on pseudodata at the design points will
be in next. Finally, the function m in design points including points a and b using the
pseudodata is estimated.

Let K ∈ S02 be a symmetric second-order kernel with support [−1, 1]. The final
estimate of function m̂ at points of plan xi, i = 0, . . . , n + 1, where x0 = a, xn+1 = b on
pseudodata xj , j = 1, . . . , 3n, with kernel K and bandwidth h is defined

m̂(x) =
1

h

3n∑
j=1

Y j

∫ sj

sj−1

K

(
x− u

h

)
du ,

where
sj =

xi + xi+1

2
, j = 1, . . . , 3n− 1 , s0 = −1 , s3n = 2 .

Bandwidth selection for pseudodata
In this part an estimate of the bandwidth for pseudodata will be searched. Note that
estimates at edge points m̂(a), m̂(b) are functions of h. Therefore, for any chosen value
h ∈ H = [1/n, 2] values m̂(a), m̂(b) have to be enumerated, then data reflection is made
and pseudodata are obtained. Hereafter, on this pseudodata minimum of the function is
searched.

To find value h using a Rice penalization function is proposed. Consider pseudodata
(xj, Y j), j = 1, . . . , 3n, x̄j ∈ [−1, 2], m̂(x) defined as above. Then

R̂n(h) =
1

n

n∑
i=1

[m̂(xi; h)− Yi]
2 · 1

1− 2xi

.

The resulting bandwidth h = ĥopt is the value h that corresponds to the minimum of the
function R̂n(h), i.e.

ĥopt = arg min
h∈H

R̂n(h) . (3)
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4 A Simulation Study
We carried out a small simulation study to compare the performance of the bandwidth es-
timates. The observations Yi, for i = 1, . . . , n = 75, were obtained by adding independent
Gaussian random variables with mean zero and variance σ2 = 0.2 to the function

m(x) = cos(9x− 7)− (3 + x12)/6 + 8x−1 .

We made estimations of the regression function by using the kernel of order 2

K(x) =

{−3
4
(x2 − 1), |x| ≤ 1

0, |x| > 1 .

In this case, there was selected ĥ = 0.0367 by using an estimate without any elimination
of boundary effects (Figure 2). At the second, there was selected ĥ = 0.0867 by using
the method of cyclic model (Figure 3) and at the third, there was selected ĥ = 0.2036 by
using the reflection method (Figure 4).

From the figures it can be seen that both, cyclic model and reflection method, are very
useful for removing problems caused by boundary effects.

5 A Practical Example
We carried out a short real application to compare the performance of the bandwidth
estimates. The observations Yi, for i = 1, . . . , n = 230, were average spring temperatures
measured in Prague between 1771 – 2000. The data were obtained from Department of
Geography, Masaryk University. We made estimations of the regression function by using
the kernel of order 2

K(x) =

{−3
4
(x2 − 1), |x| ≤ 1

0, |x| > 1 .

In this case, there was selected ĥ = 0.0671 by using an estimate without any elimination
of boundary effects (Figure 5). At the second, there was selected ĥ = 0.0671 by using
the method of cyclic model (Figure 6) and at the third, there was selected ĥ = 0.2211 by
using the reflection method (Figure 7). These figures show that both, cyclic model and
reflection method, are very useful for removing problems caused by boundary effects.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

−9

Figure 2: Graph of smoothness function with bandwidth h = 0.0367, the real regression
function m, an estimate of m.
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Figure 3: Graph of smoothness function with bandwidth h = 0.0867, the real regression
function m, an estimate of m.
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Figure 4: Graph of smoothness function with bandwidth h = 0.2036, the real regression
function m an estimate of m.
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Figure 5: Graph of smoothness function with bandwidth h = 0.0671, an estimate of m.
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Figure 6: Graph of smoothness function with bandwidth h = 0.0671, an estimate of m.
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Figure 7: Graph of smoothness function with bandwidth h = 0.2211, an estimate of m.
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