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Abstract: Stochastic optimization models are built with the assumption that
the underlying probability measure is entirely known. This is not true in
practice, however: empirical approximation or estimates are used instead.
The question then arises if such inaccuracy does not perturb resulting solu-
tions and optimal values. We measure the ”distance” between the probability
distributions by suitable metrics on the space of probability measures.

It is known that, under certain assumptions, the stability of the stochastic
optimization model is assured with respect to the selected metric, and, more-
over, the empirical estimate of the unknown distribution has suitable con-
vergence properties, including a sufficient rate of convergence. In the case
of Kolmogorov metric, the convergence rate is known if the random sample
is independent and the probability measure is ”continuous”. In the case of
Wasserstein (Mallows) metric, uniform distribution and independent random
sample, the rate of convergence is the same in the case of the traditional uni-
form process and its limiting distribution is known; for other distributions,
metrics, and the multidimensional case, the convergence properties and the
rate of convergence have to be estimated e.g. by simulations. In our contribu-
tion, we show some numerical results for independent and dependent samples
and make some backward interpretation of the results applied to stochastic
programming.
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1 Introduction
A problem of stochastic programming with a fixed constraint set can be mathematically
formulated as

inf
x∈X

∫

Ξ

g(x; ξ) µ(dξ) (1)

where ξ ∈ Ξ is a random vector defined on a given probability space (Ω,A,P), Ξ ⊂ Rs

is a closed set (support of µ), P(Ξ) is the set of all the probability measures on B(Ξ)
(Borel σ-field), µ ∈ P(Ξ) is the distribution of ξ, X ⊂ Rm is a closed constraint set
not depending on µ, and g : Rm × Ξ → R is a function lower semicontinuous in x and
measurable in ξ. Denote ϕ(µ) the optimal value of the problem (1).

In order to solve the problem (1), most of the stochastic programming models require
a full knowledge of the distribution µ. Applying the stochastic programming theory, there
are two important issues in this regard:
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• the distribution is not known; we need to find an estimate, from some historical
data, for example;

• the distribution is known but too complicated to solve the problem efficiently; for
example, solving the problem involves very often multidimensional integrals; in
this case the distribution needs to be approximated by some simpler version of
it, usually by a discrete distribution (sometimes called “scenarios” in stochastic
programming).

Let us, therefore, replace the original distribution µ in (1) by another distribution
denoted as ν. An important question then arises: how the optimal value ϕ(ν) and the op-
timal solution set of (1) change with respect to the “difference” between µ and ν. In order
to quantify the changes in the probability distribution, we have to introduce a distance on
some subspace ofP(Ξ) of the probability measures on Ξ. This is the purpose of Section 2.
We use a known stability result and show how the notion of probability metrics applies
there. Section 3 is devoted to the empirical distribution and convergence properties of
probability metrics when the empirical distribution is considered as the approximation ν
to µ in (1). Numerical study is given in Section 4, comparing the role of independent and
dependent samples in simulations.

2 Probability Metrics
A right selection of the distance on the space of probability measures is crucial in the study
of stability in stochastic programming. Some examples of improperly selected metrics are
given in Kaňková and Houda (2003); another illustration may also be found at the end of
this paper (Cauchy distribution). In general, we could claim that the process of selection
of the metric is closely related to the (mathematical) nature of the original problem.

2.1 Wasserstein Metric
For a large and common class of problems with fixed constraints having the form (1),
Wasserstein metric is used. It is considered an “ideal” metric if the functional g is
Lipschitz continuous in ξ – see Römisch (2003) for details about this notion of “ideal-
ity” in stochastic programming. One-dimensional 1-Wasserstein metric is defined for
µ, ν ∈ P1(Ξ) by

W (µ, ν) =

∫ +∞

−∞
|Fµ(t)− Fν(t)|dt

where P1(Ξ) is the class of probability measures on Ξ ⊂ R having finite first moments
and Fµ and Fν are (right continuous) distribution functions corresponding to µ and ν.

Wasserstein metric can be extended to the classes of probability distributions with
finite higher moments or multidimensional distributions in several ways; we will not pro-
ceed in this direction and we refer the reader to the book of Rachev (1991) for further
information.

Proposition 1. If, in (1), µ ∈ P1(Ξ), ν ∈ P1(Ξ), X is compact, g is uniformly continuous
on Rm × Rs, and g is Lipschitz continuous in ξ for all x ∈ X with a constant L not
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depending on x, then
|ϕ(µ)− ϕ(ν)| ≤ LW (µ, ν).

See Houda (2002) for the proof based on the results of Römisch and Schultz (1993).
Proposition 1 shows that the stability of the problem (1) depends on its structure (repre-
sented by the constant L) and on the probability (Wasserstein) distance. If s > 1 then we
consider the multidimensional version of the Wasserstein metric.

2.2 Kolmogorov Metric
The Kolmogorov metric is defined for µ, ν ∈ P(Ξ) by

K(µ, ν) = sup
t∈Ξ
|Fµ(t)− Fν(t)|

It is considered “ideal” for more complicated structures than the problem (1); however,
the main importance of this notion lies in its (relative) computational simplicity – it is
available even in cases where other metrics fail to be evaluated.

Proposition 2. Let the assumption of Proposition 1 be fulfilled, let µ be an absolutely
continuous distribution with compact support and such that its density fµ fulfils fµ ≥
ϑ > 0 for some constant ϑ, and let the support of ν be contained in a sufficiently small
neighborhood of the support of µ. Then

|ϕ(µ)− ϕ(ν)| ≤ 16L
√

s
(2K(µ, ν)

ϑ

)1/s

.

See Kaňková (1994b) for the proof. The upper bounds given in Proposition 2 are
usually sharper than those of Proposition 1, but often the only available, especially if the
dimension s of the support Ξ is large, moreover, the assumption of the existence of the
first moment is not required.

3 Empirical Distributions and Processes
If the probability measure µ, needed for a successful solution of the stochastic optimiza-
tion problem, is not available, then we have to use the empirical data at hand and replace
the original distribution by the empirical version. This is the subject of the present part
of the paper. Subsequently, one can successfully apply the stability results of the previ-
ous section in order to get upper bounds of the optimal value; similar results concerning
optimal solution sets also exist (see e.g. Römisch, 2003, Kaňková and Houda, 2003, and
references therein).

3.1 Empirical Distribution
Let ξ1, ξ2, . . . , ξn, . . . be independent random variables with the same probability distri-
bution µ. For notational simplicity, denote its distribution function by F instead of Fµ.
The random function

Fn(t) =
1

n

n∑
i=1

I(−∞;t](ξi), t ∈ R (2)
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is called empirical distribution function based on the sample ξ1, . . . , ξn (IA is an indi-
cator function of the set A). For each realization of the sample, Fn(t) is actually a distri-
bution function; we denote the associated probability measure as µn and call it empirical
measure.

It is well known that the sequence of empirical distribution functions Fn converges
almost surely to the distribution function F under general conditions as n goes to infinity.
Considering the definition of Wasserstein and Kolmogorov metrics, the values of these
metrics for F and Fn should converge, as well (see e.g. Shorack and Wellner, 1986). We
illustrate it in Section 4 of the paper.

3.2 Empirical Processes
We are also interested in the behavior of the so-called integrated empirical process
defined by

√
n W (µn, µ) =

∫ +∞

−∞

√
n |Fn(t)− F (t)| dt (3)

In the present paper, the (integrated) empirical process is considered in a more general
sense than usual: we assume only that µ ∈ P1(Ξ). In the case of uniform distribution on
[0;1], (3) describes the (integrated) empirical process in the usual sense. That process is
known as Mallows statistic and its (weak) limit is the integral of the Brownian bridge U.
The probability distribution of the limit is known explicitly, see Section 3.8 of Shorack
and Wellner (1986) for the exact formula.

In the case of other distributions, we apply Theorem 2.1 from Barrio et al. (1999):√
n(Fn(t)−F (t)) →w U(F (t)) in L1(R) if and only if

∫ +∞
−∞

√
F (t)(1− F (t))dt < +∞.

From this theorem it easily follows that, under the last condition,

∫ +∞

−∞

√
n

∣∣∣ 1
n

n∑
i=1

I(−∞;t](ξi)− F (t)
∣∣∣ dt →d

∫ +∞

−∞
|U(F (t))|dt. (4)

See Barrio et al. (1999) for details about the weak convergence in L1(R) (we have used
the fact that if some processes Yn converge weakly in L1(R) to Y , then, among others,
||Yn||L1 →d ||Y ||L1 where ||g||L1 =

∫∞
−∞ g(t)dt for each non-negative g ∈ L1(R)). In

Section 4, we illustrate this convergence by simulations for a variety of distributions.
The convergence rate of Kolmogorov metric is well known for iid samples: if ξ1, ξ2,

. . . , ξn correspond to a probability measure that is absolutely continuous with respect to
Lebesgue measure on R, then

P
{√

n sup
−∞<t<∞

|Fn(t)− F (t)| < x
} →

∞∑

k=−∞
(−1)ke−2k2x2

for x > 0

0 for x ≤ 0.

The rate of convergence is exponential and independent on the original distribution. This
kind of result is not known in case of Wasserstein metric. We no longer proceed in this
direction.
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4 Dependent and Independent Data
In economic and engineering applications, weakly dependent samples are of a very prac-
tical interest. We have seen that Wasserstein metric and its convergence properties play
an important role in the stability of stochastic programming. Now let us relax the assump-
tion of independence in (2) and assume one of the types of the weak dependence instead.
Empirical estimates have already been investigated (in the literature) for some types of
weakly (e.g. mixing) dependent random sequences (for some details see e.g. Dai, Chen,
and Birge, 2000; Kaňková, 1994a; or Wang and Wang, 1999).

In this paper, we restrict our consideration to the very special case of M -dependent
sequences. Let {ξt}+∞

−∞ be a random sequence defined on a probability space (Ω,A,P).
Let, moreover, B(−∞, a) be the σ-field generated by . . . , ξa−1, ξa, and B(b, +∞) be the
σ-field generated by ξb, ξb+1, . . .. The sequence is said to be M -dependent if B(−∞, a)
and B(b, +∞) are independent for b− a > M .

We can prove (by the techniques employed in Kaňková, 1994a) that for every natural
n there exists k ∈ {0, 1, . . .} and r ∈ {0, . . . , M} such that n = Mk + r, and

|Fn(t)− F (t)| ≤
M∑

j=1

nj

n
|Fnj

(t)− F (t)|, t ∈ R (5)

where Fnj
are empirical distribution functions determined by sequences of nj independent

random variables; moreover, nj = k + 1 for Mk + 1 ≤ n ≤ Mk + r and nj = k for
Mk + r < n ≤ M(k + 1).

Clearly, it follows from the relation (5) that the asymptotic properties corresponding to
M -dependent sequences are very similar to those proved by Proposition 1 and Proposition
2 for the independent case (the convergence is slower, of course). Moreover, it follows
from Yoshihara (1992) that every stationary φ-mixing normal distributed sequence is also
M -dependent for some M ∈ N. A stationary Gaussian random sequence {ξt}+∞

−∞ is φ-
mixing if and only if the σ-fields B(−∞, k) and B(k + n, +∞) are independent for any
n sufficiently large. For definitions of φ-mixing and more details about M -dependent
sequences see e.g. Yoshihara (1992).

4.1 Simulation Study Overview
According to our analysis above, we focus on the numerical illustration of Proposition 1
(Wasserstein metric) for several “representative” one-dimensional probability measures.
Of course, the investigation of both the more dimensional case and the “Kolomogorov
empirical process” can be very useful, however, this investigation goes beyond the possi-
bilities of the paper.

We have first generated iid samples ζ1, ζ2, . . . from the given distribution and then
made up a new series defined as ξk := 0.5ζk + 0.5ζk−1. The theoretical distribution of ξk

is given by convolution. In particular, it is
• triangular (Simpson’s) in case of uniform samples on [0; 1];
• gamma with the shape and rate parameters both equal to 2 in case of the exponential

distribution with parameter λ = 1;
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• normal with zero mean and variance 0.5 in case of normal distribution N(0; 1);
• Cauchy with the original parameters.

The empirical distribution function is given as before, based now on the (dependent)
series (ξi); Wasserstein distance is then calculated with respect to the theoretical distribu-
tion.

A four-graph set for each of the examined distributions is given. The left column of
the set is devoted to the independent data, the right one to the dependent data; the dotted
line displays the samples of length 100 and the solid line the samples of length 1000. The
first row of the graph shows the densities of the Wasserstein metric values (they should
converge to zero), the second row are the densities of the empirical process (3).

4.2 Normal, Uniform, and Exponential Distribution

As expected, the convergence properties are well satisfied in this simple case of MA(1)
process. The weak dependence (it is 2-dependence in this case) does not make great dif-
ficulties for the convergence; the differences between the densities for independent and
2-dependent data are very small if any. Theoretical background for these numerical re-
sults, and definitions of more complicated types of dependence can be found in Yoshihara
(1992).

4.3 Cutted Cauchy Distribution

The cutted Cauchy distribution is an example of a distribution with heavy tail. It is evident
that Wasserstein metric does not deal well with this type of distribution – the convergence
is very slow and the distribution of the limiting process does not stabilize after a small
number of samples. The dependence is still a problem in this case. Cutting is necessary
because standard Cauchy distribution does not have the first moment and Wasserstein
metric is not defined for it.

5 Conclusion

The present paper illustrates some results regarding the stability of stochastic program-
ming problems with respect to changes in the underlying distribution. The numerical
study is given for the simple case of weakly (2-)dependent data and we show that it does
not represent essential difficulties. The theoretical part of the paper formulates some basic
results which may be subject of our future research.
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Figure 1: Convergence properties for dependent and independent data samples.
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Vlasta Kaňková and Michal Houda
Institute of Automation and Information Theory
Academy of Sciences of the Czech Republic
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