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Abstract: In this paper, we construct Fiducial Generalized Confidence In-
tervals (FGCI) for ratio of means of two lognormal distributions based on
independent observations from the two distributions. We compared the pro-
posed method with another method, the Z-Score method. A simulation study
showed that the FGCI method performs much better than the Z-Score method,
especially for small and medium samples. We also prove that the confidence
intervals constructed using FGCI method have correct asymptotic coverage.
In this paper we propose a new method for constructing simultaneous con-
fidence intervals for all pairwise ratios of means of lognormal distributions.
Our approach is based on Fiducial Generalized Pivotal Quantities (FGPQ)
for vector parameters. Simulation studies show that the constructed confi-
dence intervals have satisfactory small sample performance. We also prove
that they have correct asymptotic coverage. The result has applications in
bioequivalence studies for comparing three or more drug formulations.

Keywords: Fiducial Generalized Pivotal Quantity (FGPQ), Fiducial Gen-
eralized Confidence Interval (FGCI), Asymptotic Properties, Simultaneous
Intervals, Bioequivalence.

1 Introduction
Fisher (1935) introduced the method of Fiducial Inference as an alternative to Bayesian
inference in order to circumvent the step of selecting prior distributions for parameters.
He illustrated the method by considering testing and interval estimation problems for sit-
uations where exact methods were unavailable. The simplest such problem where the
fiducial method yielded a new solution at the time is the so called Behrens-Fisher prob-
lem. See Behrens (1929) and Fisher (1939). In this problem, one is interested in a confi-
dence interval for µ1 − µ2 based on independent random samples Xi, i = 1, . . . ,m from
N(µ1, σ

2
1) distribution and Yj , j = 1, . . . , n from N(µ2, σ

2
2) distribution. Fiducial infer-

ence was the subject of considerable debate and skepticism during the period from 1935
to 1980. Many published papers noted that fiducial confidence intervals were not exact
in the frequentist sense. The end result was that fiducial inference fell into disrepute well
before the end of the 20th century.

Tsui and Weerahandi (1989) introduced the method of generalized P -values for de-
riving approximate tests of hypotheses for problems where exact frequentist tests were
unavailable. Subsequently, Weerahandi (1993) introduced the concept of a generalized
pivotal quantity (GPQ) for a scalar parameter θ, using which he constructed approximate
confidence intervals for problems where pivotal quantities, in the usual sense, are unavail-
able. He referred to such intervals as generalized confidence intervals (GCI). Hannig et
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al. (2005) identified an important subclass of GPQs, called Fiducial Generalized Pivotal
Quantities (FGPQ). They proved a theorem to the effect that, under fairly general con-
ditions, GCIs obtained from FGPQs, called Fiducial Generalized Confidence Intervals
(FGCI), have correct asymptotic coverage. They also noted the essential equivalence be-
tween fiducial inference and generalized inference. In particular, their asymptotic results
apply to fiducial intervals as well.

Abdel-Karim (2005) used FGPQs for vector parameters to construct simultaneous
confidence intervals for all pairwise differences of means of k normal distributions. She
showed via simulation studies that the intervals had satisfactory coverage in most sit-
uations. In this paper we use a similar approach to construct simultaneous confidence
intervals for all pairwise ratios of means of k lognormal distributions.

More specifically, suppose Yi1, . . . , Yini
is a random sample from LN(µi, σ

2
i ), i =

1, . . . , k, where LN(µ, σ2) refers to a lognormal distribution with parameters µ, σ2, i.e.,
ln(Yij) ∼ N(µi, σ

2
i ). We are interested in obtaining simultaneous confidence intervals for

all pairwise ratios θrs = θr/θs (1 ≤ r < s ≤ k) where θr is the mean of LN(µr, σ
2
r). In

particular, log θr = µr+σ2
r/2. This is equivalent to the problem of obtaining simultaneous

CIs for all pairwise differences of the form

δrs = log(θr)− log(θs) = (µr − µs) +
1

2
(σ2

r − σ2
s) .

Zhou et al. (1997) discuss comparing two lognormal means using a likelihood approach
and also a bootstrap approach. Krishnamoorthy and Mathew (2003) proposed generalized
confidence intervals for comparing lognormal means. Lidong, Hannig, and Iyer (2005)
considered interval estimation for the ratio of two lognormal means.

To our knowledge there is no previous work on simultaneous inference on ratios of
lognormal means. We consider it in this paper for two reasons. First, this problem pro-
vides us the backdrop for illustrating the construction of simultaneous FGCIs starting
from a vector FGPQ, and second, this is an important problem in some applications as
will become clear from the next paragraph.

Simultaneous confidence intervals for certain lognormal parameters are useful in phar-
maceutical statistics. In bioequivalence studies comparing a test drug to a reference drug,
it is of interest to compare the mean responses of the two drugs to ensure that they are
(more or less) equally effective. With this in mind the U.S. Food and Drug Administra-
tion (FDA) requires the lab submitting an approval request to demonstrate that certain
equivalence criteria are satisfied. One such criterion is called the average bioequivalence
criterion which requires the ratio θ = µT /µR to be sufficiently close to 1, where µT de-
notes the mean response to a test formulation of a drug and µR denotes the mean for the
reference formulation of the drug. A confidence interval for the ratio θ = µT /µR is useful
in this situation. A key response variable in such studies is called AUC which is the area
under the curve relating the plasma drug concentration in a patient to the elapsed time
after the drug is administered. As per the FDA guidelines, the analysis of AUC is to be
carried out using the log scale. This is because the distribution of AUC is typically mod-
eled well by a log-normal distribution. So the parameter of interest is the ratio of means
of two log-normal distribution. This approach is termed bioequivalence and involves the
calculation of the confidence interval for the ratio of the average of test and reference
products.
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The experimental design of choice in bioequivalence studies comparing two or more
formulations of a drug is a crossover design with adequate washout periods to minimize
carryover effects. However, a parallel design is more appropriate when the half lives
of drugs being tested are very long and this is recognized in the U.S. Food and Drug
Administration (2001). The two-group parallel design was considered by Lidong et al.
(2005) who derived FGCIs for the ratio of means of two Log-normal Distributions.

Some bioequivalence studies consider one or more reference drugs (for instance, the
same drug in different forms – tablets, capsules, caplets, liquid, etc) and one or more
test drugs. In such studies one is often interested in all pairs of ratios of means to help
assess mutual bioequivalence of all formulations. We propose a solution to this problem
by applying the method introduced in Abdel-Karim (2005) for constructing simultane-
ous confidence intervals based on FGPQs. The performance of the proposed method is
assessed using a statistical simulation study.

The paper is organized as follows. In the next section we describe the notation and
terminology used in this paper and exhibit simultaneous Fiducial Generalized Confidence
Intervals for ratios of lognormal means. The performance of these intervals is assessed
by statistical simulation which is described in Section 3. A proof of the asymptotic cor-
rectness of the proposed intervals is given in Section 4. Some concluding remarks are
presented in Section 5.

2 Simultaneous Fiducial Generalized Confidence Inter-
vals for Ratios of Log-Normal Means

In this section we show how one may construct simultaneous confidence intervals for pa-
rameters of interest based on a vector FGPQ. First we give the definition of a Generalized
Pivotal Quantity (GPQ).

Definition 1. Let S ∈ Rk denote an observable random vector whose distribution is
indexed by a (possibly vector) parameter ξ ∈ Rp. Suppose we are interested in making
inferences about θ = π(ξ) ∈ Rq (q ≥ 1). Let S? represent an independent copy of S. We
will use s and s? to denote realized values of S and S?, respectively. A generalized pivotal
quantity for θ, denoted by Rθ(S, S?, ξ) (or simply Rθ or R, when there is no ambiguity)
is a function of (S,S?, ξ) with the following properties.
(GPQ1) The conditional distribution of Rθ(S, S?, ξ), conditional on S = s, is free of ξ.
(GPQ2) For every allowable s ∈ Rk, Rθ(s, s, ξ) depends on ξ only through θ.

This definition is essentially the same as the definition given in Weerahandi (1993) but
we use a slightly different notation which eventually facilitates a rigorous mathematical
treatment of properties of confidence intervals obtained using GPQs.

Property GPQ2 implies that Rθ(s, s, ξ) = f(s, θ) for some function f . It turns out
that the subclass of GPQs for which f(s, θ) is a function of θ only, say f(s, θ) = f(θ),
has a special connection with fiducial inference. Generalized confidence regions obtained
using such GPQs are not guaranteed to be intervals unless the function f(θ) is invertible.
In this case, one may assume, without loss of generality, that f(θ) is identically equal to θ.
Such GPQs exist in practically every application we have considered. Hannig et al. (2005)
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refer to this subclass of GPQs as Fiducial Generalized Pivotal Quantities (FGPQ). They
have shown that, if Rθ is a FGPQ for θ then frequentist probability intervals associated
with the distribution of Rθ have a corresponding interpretation as fiducial probability
intervals associated with the parameter θ.

Given a FGPQ for θ, a Fiducial Generalized Confidence Interval (FGCI) for θ may
be written as L ≤ θ ≤ U where L is the α/2 percentile and U is the 1 − α/2 percentile
of the distribution of Rθ(s,S?, ξ), where s is the observed data. Except in some simple
problems these percentiles are estimated by Monte-Carlo methods.

2.1 Proposed Method for Simultaneous Intervals

For i = 1, . . . , K, suppose Yij
iid∼ N(µi, σ

2
i ), for j = 1, . . . , ni. Then exp(Yij), j =

1, . . . , ni is an iid sample from a lognormal distribution with mean θi = exp(µi + σ2
i /2).

The problem of constructing simultaneous confidence intervals for θij = θi/θj for all
i 6= j is equivalent to the problem of constructing simultaneous confidence intervals for
the parameters δij = log(θij) = (µi + σ2

i /2)− (µj + σ2
j /2).

We first observe that a FGPQ for δij is given by

Rδij
(S,S?, ξ) = Rµi

−Rµj
+

1

2
(Rσ2

i
−Rσ2

j
)

where
Rµp = Ȳp − Sp

S?
p

(Ȳ ?
p − µp)

and

Rσ2
p

=
S2

p

S?2

p

σ2
p

for p = 1, . . . , K. Here Ȳp denotes the mean and S2
p is the sample variance of Ypj for

j = 1, . . . , np and Ȳ ?
p , S?2

p are independent copies of Ȳp, S2
p .

Define

D(S, S∗, ξ) = max
i6=j

∣∣∣∣∣
(Y i + (1/2)S2

i )− (Y j + (1/2)S2
j )−Rδij

(S, S∗, ξ)√
Vij

∣∣∣∣∣ (1)

where Vij is a consistent estimator of the variance of (Y i + (1/2)S2
i )− (Y j + (1/2)S2

j ),
i.e.,

Vij =
S2

i

ni

+
S4

i

2(ni − 1)
+

S2
j

nj

+
S4

j

2(nj − 1)
. (2)

Then 100(1− α)% two-sided simultaneous FGCIs for pairwise ratios θij , i 6= j of means
of more than two independent lognormal distributions are [Lij, Uij] where

Lij = exp(Y i − Y j + (1/2)S2
i − (1/2)S2

j − d1−α

√
Vij) (3)

Uij = exp(Y i − Y j + (1/2)S2
i − (1/2)S2

j + d1−α

√
Vij) (4)

and dγ denotes the 100γ-percentile of the conditional distribution of D(S, S∗, ξ) given
S = s.
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Table 1: Classification of sample size and proportions of empirical coverage within limits
of simulation error for each class (three populations).

Size Combination Proportion
small (5 5 5) (5 5 25) (5 25 25) (5 5 125) 13.09%

medium (25 25 25) (5 25 125) (5 125 125) (25 25 125) (25 125 125) 39.28%
large (125 125 125) 62.86%

Remark 1. Let δ denote a vector of parameters whose components are δij , 1 ≤ i < j ≤
K. It is instructive to note that the confidence region for δ resulting from the proposed
simultaneous intervals for δij are one of the many possible ways in which to construct a
generalized confidence region for δ. We begin with the vector FGPQ Rδ and obtain a
confidence region for δ that has a prespecified shape. For details the reader may refer to
Hannig (2005) and Hannig et al. (2005).

In the next section we examine the performance of these simultaneous intervals in
small sample situations as well as large sample situations. Section 4 contains a theorem
describing the asymptotic behavior of these intervals.

3 Simulation Study and Discussion of Results

3.1 Details of Simulation Study

Simultaneous FGCIs for all pairwise ratios of means of three independent lognormal dis-
tributions were considered in the simulation study. The simulations were done using 5000
independently generated datasets for each of a number of scenarios covering different pa-
rameter settings. For each simulated dataset the 95% simultaneous generalized confidence
intervals were estimated using 10000 realizations of the random variable D(S,S∗, ξ) de-
fined in (1). Without loss of generality, it was assumed that all µi’s, i = 1, 2, 3, are equal
to 0. The values used for sample sizes were 5, 25 and 125. Five levels of σ2

1 were used –
0.01, 0.1, 1, 10 and 100. For each level of σ2

1 , σ2
2 values were set at 2lσ2

1 , and σ2
3 values

were set at 2mσ2
1 ,where l and m are integers and 0 ≤ l ≤ m ≤ 3. Table 1 gives a clas-

sification of the various sample size combinations considered in the simulation study into
small sample cases, medium sample cases and large sample cases. The last column of
Table 1 gives the proportion of the simulation settings for which the empirical coverage
probability is not significantly different from the target coverage rate of 0.95.

Several scenarios with combinations of very large sample sizes and extreme variances
were also included in the study to judge how soon the asymptotics take effect (see Sec-
tion 4). The parameter settings for these large sample cases are given in in Table 2. The
last column in Table 2 gives the empirical coverage probability for the particular simula-
tion setting considered.
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Table 2: Empirical coverage associated with 95% FGCIs for combinations of very large
sample size and extreme variances (three populations).

n1 n2 n3 σ1 σ2 σ3 Empirical Coverage
125 125 125 0.01 0.01 0.01 0.9531
625 625 625 0.01 0.01 0.01 0.9490

1000 1000 1000 0.01 0.01 0.01 0.9491
2000 2000 2000 0.01 0.01 0.01 0.9498
125 125 125 100 800 1600 0.9509
625 625 625 100 800 1600 0.9488

1000 1000 1000 100 800 1600 0.9513
2000 2000 2000 100 800 1600 0.9484

3.2 Discussion
The results of the simulation study are also classified into three categories according to
the combination of sample sizes – small samples, medium samples, and large samples.
See Table 1. Figure 1 shows histograms of empirical coverage probabilities for each
of these three cases and also for all of the cases combined. It is seen that the empirical
coverage rates are in the range from 0.94 to 1.0 and hence the proposed interval procedure
is conservative. The results also show that most of the empirical coverages bigger than
0.98 occur with the combination of very small samples and large variances.

As the sample size increases, the empirical coverage approaches the claimed cover-
age and the proportion of empirical coverage within the binomial simulation error bounds
increases. Table 2 shows that empirical coverages approach the claimed coverage as sam-
ple sizes increase even for very large variances. The convergence appears to be slower for
scenarios with large variances than scenarios with small variances.

4 Asymptotic Behavior of Simultaneous FGPQs for Ra-
tios of Lognormal Means

We continue to use the notation of the previous section. We now prove the following
theorem

Theorem 1. Let all n1, . . . , nK approach infinity in such a way that rj = lim nj/(n1 +
· · ·+nK) exists and 0 < rj < 1. Then the 100(1−α)% two-sided simultaneous confidence
intervals have asymptotically 100(1− α)% frequentist coverage, i.e.,

P (Lij ≤ θij ≤ Uij , for all i, j) → 1− α .

Proof. Set n = n1 + · · · + nK . Define a vector m = (µ1, . . . , µK , σ2
1, . . . , σ

2
K), and a

diagonal matrix

D = diag

(
σ1√
r1

, . . . ,
σK√
rK

,
σ2

1

√
2√

r1

, . . . ,
σ2

K

√
2√

rK

)
.
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Figure 1: Histograms of empirical coverage (three populations)

The central limit theorem implies that
√

n(Sn −m)
D−→ DZ where Z = (Z1, . . . , Z2K)

are i.i.d. N(0,1) variables. By Skorokhod’s theorem (see Billingsley (1995)) we can find a
sequence S̄n independent of S∗ such that S̄n has the same distribution as S and

√
n(S̄n −

m) → DZ almost surely. In what follows we can therefore assume without loss of
generality that √

n(Sn −m) → DZ a.s. (5)

It follows from the Slutsky’s theorem that as n →∞

D(S,S?, ξ) → max
i6=j

∣∣∣∣∣∣∣

Z?
i

σi√
ri

+ Z?
i+K

σ2
i√
2ri
− Z?

j
σj√
rj
− Z?

j+K

σ2
j√
2rj(

σ2
i

ri
+

σ4
i

2ri
+

σ2
j

rj
+

σ4
j

2rj

)1/2

∣∣∣∣∣∣∣
a.s. (6)

Here the a.s. comes from the a.s. convergence in (5).
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Recall the definition of the percentile dγ(s) above. Since the limiting distribution in
(6) is continuous, we have by the definition of convergence in distribution

dγ(S) → qγ , (7)

where qγ is the the 100γ-percentile of the limiting distribution in (6).
Finally, realize that (5) implies

Y i − Y j + (1/2)S2
i − (1/2)S2

j − δij√
Vij

→
Zi

σi√
ri

+ Zi+K
σ2

i√
2ri
− Zj

σj√
rj
− Zj+K

σ2
j√
2rj(

σ2
i

ri
+

σ4
i

2ri
+

σ2
j

rj
+

σ4
j

2rj

)1/2
a.s.

This, together with (7) and some algebra gives

P (Lij ≤ θij ≤ Uij, for all i, j)

= P

(
max
i6=j

∣∣∣∣∣
Y i − Y j + (1/2)S2

i − (1/2)S2
j − δij√

Vij

∣∣∣∣∣ ≤ d1−α

)

→ P


max

i6=j

∣∣∣∣∣∣∣

Zi
σi√
ri

+ Zi+K
σ2

i√
2ri
− Zj

σj√
rj
− Zj+K

σ2
j√
2rj(

σ2
i

ri
+

σ4
i

2ri
+

σ2
j

rj
+

σ4
j

2rj

)1/2

∣∣∣∣∣∣∣
≤ q1−α




= 1− α

as n →∞.

5 Conclusion
In this paper we proposed a new method to construct simultaneous confidence intervals
for all pairwise ratios of means of more than two lognormal distributions based on a
Fiducial Generalized Pivotal Quantity (FGPQ). We verified by means of a simulation
study that these intervals perform satisfactorily in small samples. We also proved that
the constructed confidence intervals have correct asymptotic coverage. The role of such
intervals in bioequivalence studies was also discussed.
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