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Abstract: A procedure for detecting outliers in regular linear regression
models with constraints on mean value parameters is presented. A problem,
how unknown variance components influence the optimum quality of used
test statistics, is studied by sensitivity analysis. Explicit forms of insensitiv-
ity regions for testing hypotheses are given.
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1 Introduction

Let the mixed linear regression model when mean value parameters satisfy some linear
constraints be under consideration. To detect rough errors or mistakes (outliers) in obser-
vations needs a knowledge of a covariance matrix of an observation vector. If unknown
variance components occur in it, some problems arise how to recognize, whether esti-
mates or approximations of them can be used instead of their true values. Insensitivity
approach is presented in the paper.

The aim of the paper is to give a procedure how to detect outliers and to determine
proper insensitivity regions for testing hypotheses.

2 Models with Outliers

A linear regression model with constraints will be denoted as
Y ~ N, (X3,%), BeV={u:b+Bu=0}. (1)

Here Y is an n-dimensional random vector (observation vector) which is normally dis-
tributed, its mean value is E(Y) = X3 and the covariance matrix is var(Y) = 3. The
parametric space for 3 is V, 3 € R” is an unknown parameter, X and B are given matri-
ces of the type n X k and g x k, respectively, b € R? is a given vector.

The model (1) will be supposed to be regular, i.e., the matrix X has the full column
rank (rank(X) = k < n), X is positive definite (p.d.) and rank(B) = ¢ < k.

There are several procedures to detect outliers in measurements, cf. e.g. Gnanadesikan
(1977). Here the approach given by Zvara (1989) is used. At the first step the parameter
3 in the model (1) is estimated as the best linear unbiased estimator (BLUE) ,[3’

Lemma 2.1. In the model (1) the BLUE B of the parameter (3 is
B = (MpCMp)"X'S'Y - C'B/(BC'B/) b,
var(3) = C™' = C™'B/(BC'B') 'BC™" = (M CMp)*
C=X¥"'X.
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(The symbol (Mg CMp: )" means the Moore-Penrose generalized inverse of the matrix
Mp CMp (¢f. Rao and Mitra, 1971). Here Mg =1 — Ppg, Pg = B'(B')".)

Proof. Proof is given, e.g. in Kubdcek et al. (1995, p. 80). U
The residual vectorv =Y — XB is distributed as
v~N,[0,%—-XMpgCMp)"X] .

Suspicious measurements ¥;, ¢ = i1, ..., 1., can be found by testing the null hypothesis
Hy: E({v};) =0,7=1,... n, against the alternative hypothesis H, : Ji : E({v};) # 0
by the help of the test statistic

T = v'[var(v)] v ~ X y_1(61) 61 = E(v)[var(v)]"E(v).

One version of [var(v)]™ is X', With respect to Scheffé (1959) it is valid

Vh e R": |h'v| < \/Xqufk(l —a)y/hvar(v)h < Vvar(v)] v < x2,, (1 —a),

where X7, . (1 — ) is the (1 — «) quantile of the chi-square distribution with n + ¢ — &
degrees of freedom. Thus if

{vhl > el — ) lvarv)}, i€ {l,.n}

then the ith measurement is considered to be suspicious. However x2 +q_r(l—a)insome
cases is rather large and therefore in practice the value u(1 — «/2) (the (1 — a;/2)-quantile

of the normal distribution Ny (0, 1)) is used instead of \/X%Jrq_k(l —a) > u(l —a/2).

If no suspicious large value |[{v},|, i.e., no suspicious measurement, is found, stop this
procedure. If 7 suspicious measurements are found, the test given in the following text is
a basis for a decision whether suspicious measurements are outliers or not. Let the model
(1) be rewritten in the form

YwNn[(X,E)<§),E}, BeV={u:b+Bu=0}, AeR, (2

where

. ' 0, k #£ 1,
E= (e, ....,e;), e, cR", j=1...r, {eij}k:{l kzi]-
) 70

and i; is the index with suspicious large value [{v};,|.

Lemma 2.2. The hypothesis Hy : A = 0 versus H, : A # 0 can be tested in the model
(2) if and only if

MXMp) N M(E) = {0} o M (g) N M @) — {0} 3)

(Here M(A,,,,) = {Au : u € R"} is a linear subspace generated by columns of the
matrix A.)
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Proof. The hypothesis 03 + IA = 0 can be tested iff M (9) C M <)E(,/ ’ ](3)/> (cf. Zvira,
1989). Thus it must be true M(E'Mxy,,,) = M(I) = R". Since

!/
rank (MEB{,X ) = rank (E'Mxar,, ) + rank(XMp)

(cf. Rao and Mitra, 1971, p. 137), the equality rank(E'Mx,;,,) = r can be valid iff
M(XMp )N M(E) = {0} (rank(E’') = r).
The equivalence (3) is implied by the following equivalence

Mp X'
E/

M (g) M (ﬁ) — {0} & rank (’é: ]g) — rank (g) + rank(E)

In both cases the equality rank(E'Mx,,,, ) = rank(E’) is necessary and sufficient condi-
tion for equivalence (3). ]

M(XMp)NM(E)={0} < rank ( ) = rank(E') + rank(MpX'),

Lemma 2.3. Let the condition (3) be fulfilled. In the model (2) BLUEs of parameters (3
and A are

B,., B — (MpCMp)tX'SIEA
( ) ~\[E (M, SMy, ) B BE (Y -XB))

Further

Var(léout) = VaI'(B) + (MB’CMB’)+ X'E_lE
—1
x [E (MXMB,EMXMB,)+E] E'S'X (Mg CMp)*,

~ -1
V&I"(A) = [E/ (MXMB/EMXMB/)+ E] s

-1

cov(B, A) = —(MpCMp ) X'S'E [E’ (M, SMyar,) E]

Proof. At first it is to be remarked that regularity of the matrix E'(Mx s, XMx s, ) TE
is implied by the assumption (3) and rank(E,, ,) = r < n, respectively.

Let 3, be any solution of the equation B3 + b = 0, i.e., 3 = B, + Mpy, v € R-.
Thus we obtain the model without constraints

Y - X3, ~ N, {(XMB,,E) (Z)z} . ~eRF, AcR,

which is not regular, however the assumption (3) ensures the estimability of vectors M g/~
and A. BLUEs of Mg~y and A are

M o~y MpX\ o, T MpX'E (Y - XB,)
(27) - [(4) = o] (M)
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: . . YN
The covariance matrix of the estimator (3,,,, A )’ is

out’

o (5) - [(45) ] - (B5),

A E 21], [22]
where
= (MpCMp)" (MB/CMB/)+X’E‘1E,
(M CMp) " X'S B [B (Mg, SMy, ) B| = [21)"
-

~ [E (M, SMxur,, ) ' E|

B, = -C'B'(BC'B')"'b.
O

Now outliers among suspicious measurements v;, ¢ = i1,...,%,, can be found by
testing the null hypothesis Hy : A = 0 against the alternative hypothesis H, : A # 0 by
the help of the test statistic

T = A var(A)] A ~ x2(85), 6, = Alfvar(A)] A

Similarly as in the case of selection of suspicious measurements, if

4>Vl —a) {Var(ﬁ)} : it e {i, ... i),

i*g*

where ¢; is the index with suspicious measurement, then the ¢*th measurement is consid-
ered to be outlier. The value u(1 — a/2) instead of \/x2(1 — «) is used sometimes in
practice. Some precaution is necessary in the case

< Vet {rm@)}

*e*

u(l — a/2) {var@)} ]{A}ﬁ

At the last step outliers y;+~ are omitted from realization of the observation vector Y
and the whole procedure is repeated.

Remark 2.4. It is well known that the least squares (LS) methodology leads to an effect
that outliers significantly influence estimates in a contradiction to the robust methodology
with just opposite effect. Thus in the LS-methodology an outlier can be nonsignificantly
overlapped by a residual influenced by the outlier itself.

3 Problem of Variance Components

In this section we use the insensitivity approach. For more detail we refer to Kubacek and
Kubackova (2000), LeSanskd (2001, 2002).

Let the covariance matrix in models (1), (2) be considered in the form Y = E?:l %V,
9 = (Vq,...,9,) € ¥ C RP. Such models are called mixed models. Here except 3 and
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A also the vector parameter 9 is unknown. Vy,...,V, are known symmetric matri-
ces. The parameter space ¥ is an open set in RP with the property that if ¥ € ¢, then
P9V, isp.d.

If an approximation ¥, of the parameter 4 is at our disposal, outliers can be detected
by the help of the procedure given in the previous section. In this case estimators are
Yy-locally best linear unbiased only.

However the substitution of the true value 19" by its approximation ¥, can destroy the
optimum quality of used statistical inference, namely the risk of tests 7" and 7,,;. Hence
the question arises which values of 1, make increase of the risk of the test « not larger
than tolerable given e. One possible solution is to find insensitivity regions N; and Nout,g
of all points ¥y = 9" + §9 such that if 9y € N and ¥y € N, ., then the risk of tests T’
and 7, respectively, is not larger than o + €.

Lemma 3.1. The infinitesimal approximation of T'(9" + 019) is
TS + 69) ~ T(9°) + 1/ (97)69 ,
where
(")}, = v(9) {257 (07 XMy C(9 )M | XS (9) V5 1(9)
- 2*1(19*)Viz*1(19*)}v(q9*), i=1,....p.
Further

Eln/ (97)59] = —a'(97)59
var[n'(9%)69] = 209'Sk 9,

where

{a(9)}, = tr { [MXMB,zw*)MXMB,er} Ci=1.....p,

and the (i, j)th entry of the matrix Sg, i,5 = 1,...,p, is
{Sk};,; =tr { (M, (8 )Mxa, ] Vi [MXMB/E(TS’*)MXMB’}JFVj} '

Proof. Using Taylor series when the second and higher derivatives are neglected we get

T(9" +09) ~ 0*+28Tﬁ* Ji,
@)}, = 20— oy 09 2 v v,

In the following text the dependence on 4 is not written. From equalities

ox! 02, 0%
0, = 819,2 T,
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it follows
oT
{n}i:a_ﬁi:V/Aiva izl?"'7p>
A; =22"'X(MpCMp) X' 'V;u ! -2y, !,
Thus

El{n};] = tr[Avar(v)],
cov [{77}2 : {n}j] = cov(v'A;v,v'A;v) = 2tr [A;var(v) A var(v)]

and the proof can be easily finished. U

Let € > 0 be a given tolerable increase of the risk « of the test 7". Let o, be given as a
solution of the equation

P, {T(ﬂ*) + 0. > Xiﬂ_k(l — a)} =a+e,

i.e.,

55 = X?L—‘,—q—k(l - Oé) - X?L—i—q—k(l —a— 5) :
The symbol Py, means the probability in the case that the null hypothesis Hj is true. Let
t > 0 be a such real number that Py, {n'(¥")0d < 6.} = 1, i.e.,

E [n'(97)09] + t/var [/ (97)09] < 4. 4)
where ¢ is sufficiently large. Let
A@::{ﬂ*+—&ﬂzﬁmnxﬁﬂaﬁ]+¢ wn[nqﬁwaﬂ]g(z}
be the insensitivity region for the test 7. Then
¥ +00eN. = Py {TW+69)>xo, (l-a)}<a+e.
Theorem 3.2. The insensitivity region for the test T' can be expressed as
N = {9+ 60
(69 — 6.Dfa(9")]' D, [08 — 6.Dfa(¥")] < [1 +a'(9")D;i a(9")] 53} ,

where
D, = 2t*Sk — a(9*)a’(9").

Proof. 1t is sufficient to check the inequality (4) from which it follows

tvar[n (9%)69] < [6. + a'(9%)69)°
= 0V (2t°Sk — a(¥)a'(¥")) 09 — 26.a'(¥*)69 < 6.

Since a(9¥") € M(Dy) (cf. LeSanskd, 2001), . can be written as in the statement. [
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Lemma 3.3. The infinitesimal approximation of Ty (9" + 019) is
Tout (9" + 69) = Tou (") + 15, (97)09

where
(M0 (97)}; = =B (0 FAW) — 28 (9)Givou(9), i=1,....p,
F;, = E' (Mxu, Z(9)Mxar,, ) Vi (Mxar, Z(9) My, ) E,
G, = E (Mxa, Z(9")M XMB,) ViZTH(9"),
Vout(9) = Y — XB,,,(9") — EA(9).
Further
E[n5,,(97)09] = —ay,,(97)69,
var[n, ,(9%)89] = 69’ (ACy — 2S) 699,
where
{8 (99}, = tr(ZV,), i=1,...,p,
{Cu},, =tr [(MXMB,E(ﬁ*)MXMB,)+ Vizvj] ,
{Sz}i, =tr(ZViZV)), i,j=1,...,p,
and

Z = (Mxy, (0" )My, ) E [E’ (Mxar, S(0") My, )+ E] E
X (Mxar, 2(9)Mxar, )"
Proof. It can be proved similarly as Lemma 3.1. O
Analogously as for the test 7" can be stated. Let d,,; . be given by
Prio { Tout(9") + Goute = X7 (L —a)} =a +e
= Joute = X;(1—a) = x;(L—a—e).
Let ¢ > 0 be a such real number that Py, {1, (9")00 < dpuc} = 1, i€,
E (17, (97)09] + t/var [, (97)89] < Gout,c

where ¢ is sufficiently large. Let

Nore = {07 + 69+ B[}, (9769 + t/var [0 (97)30] < G |

be the insensitivity region for the test 7,,;. Then
W+ 69 €Npwre = P {Tow(+69) > }(1—a)} <a+e.

Theorem 3.4. The insensitivity region for the test T,,; can be expressed as
Noute = {"9* + 09 : [519 Oout,eD outtaOUt(ﬁ*)}/Doutvt [(519 - 50ut7€Djut,taout(l9*)}

[1 + aout<19 )D:ut,taOUt@? )] (sguts}?
Dout,t = ¢* <4CU - 2SZ) - aomt(19 ) out(lﬂ*)
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4 Conclusion

Generally insensitivity regions N, and ./\/(mt,6 are different. Moreover, Naut’s depends on
the number of suspicious measurements.

An information on NV, and /\/’Oum, respectively, enables us to decide whether approxi-
mations of ¥ can be used in statistical inference or not. Some more detailed analysis and
a numerical example exceed the scope of the paper, it is prepared a continuation.

Acknowledgement

This work was supported by the Council of Czech Government MSM 6 198 959 214.

References

Gnanadesikan, R. (1977). Methods for Statistical Data Analysis of Multivariate Obser-
vations. New York: J. Wiley.

Kubécek, L., and Kubackovd, L. (2000). Nonsensitiveness regions in universal models.
Math. Slovaca, 50, 219-240.

Kubacek, L., Kubackova, L., and Volaufova, J. (1995). Statistical Models with Linear
Structures. Bratislava: Veda.

LeSanskd, E. (2001). Insensitivity regions for testing statistical hypotheses in mixed
models with constraints. Mt. Math. Publ., 22, 209-222.

LeSanskd, E. (2002). Optimization of the size of nonsensitiveness regions. Appl. Math.,
47,9-23.

Rao, C. R., and Mitra, S. K. (1971). Generalized Inverse of Matrices and its Applications.
New York: J. Wiley.

Scheffé, H. (1959). The Analysis of Variance. New York: John Wiley & Sons.

Zvara, K. (1989). Regression Analysis. Praha: Academia. (in Czech)

Authors’ address:

Eva Fiserova and Lubomir Kubacek
Dept. of Math. Anal. and Appl. Math.
Faculty of Science

Palacky University

Tomkova 40

CZ 779 00 Olomouc

Czech Republic

E-mail: fiserova@inf.upol.cz
and kubacekl @inf.upol.cz



