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Abstract: In designing monitoring systems for public health tasks it can be
important to give different weights to the cases of under- and overestimation
of a binomial parameter. We show how asymmetric loss functions can be
used for this aim. Bayesian interval-based approaches can be combined with
these loss functions and with prior knowledge about diagnostic classification
errors to determine optimal sample sizes.

Zusammenfassung: Beim Design von Monitoringsystemen kann es wichtig
sein, der Über- bzw. Unterschätzung eines Binomialparameters unterschied-
liches Gewicht zu geben. Wir zeigen wie asymmetrische Verlustfunktionen
dafür genutzt werden können. Weiters wird erläutert, wie bayesianische inter-
vallbasierte Ansätze mit diesen Verlustfunktionen sowie mit Priorwissen über
diagnostische Fehlklassifikationen kombiniert werden können, um optimale
Stichprobenumfänge zu bestimmen.

Keywords: Bayesian Sample Size Determination, Decision Theory, Sensi-
tivity, Specificity.

1 Introduction
Statistical methods have reached quite a high level of importance in many application
fields e.g. public health or social-economic problems. Collecting data to get robust an-
swers affords substantial monetary funds. Therefore the decision-makers in politics and
administration (but also the tax payers!) are interested in data collection systems with
high efficiency. If the sampling process is repeated periodically it shall be called a moni-
toring system or equivalently a surveillance system (Toma, 1999). In this paper the focus
is on monitoring of a binary variable e.g. the health status, antibiotics resistance etc. The
proportion of affected subjects is measured with diagnostic tests.

The following aspects are relevant for an efficient design of a monitoring system:
• The sample size should be as small as possible to keep sampling costs low.
• All available prior knowledge shall be included to increase the efficiency of the

system.
• The bias due to imperfect diagnostic tests has to be considered.

The paper starts with a short summary on Bayesian parameter estimation and credibility
intervals. In the next section a decision theoretic approach is discussed, which is followed
by a description of interval-based Bayesian approaches for sample size determination. In
a last step the characteristics of imperfect diagnostic tests (sensitivity, specificity) are in-
troduced and built in the complete model. Finally some results for different prior settings
are presented. For numerical calculations and graphics SAS 9.1.3 has been used.
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2 Bayesian Credibility Intervals
We assume a population model where the target variable has two outcomes and is homo-
geneously distributed

Xi
iid∼ Bernoulli(θ) .

The parameter of interest θ is estimated from an experiment of sample size n with x
positive outcomes. Thus, for large populations x follows a binomial distribution

X ∼ Binomial(n, θ) , i.e. P (X = x) =

(
n

x

)
θx(1− θ)(n−x) .

If the sample is the only source of information the ML-estimator of θ is θ̂ = x/n
(Greene, 2000). In classical statistics confidence intervals for this estimator can be con-
structed. From a Bayesian point of view one tries to reach (at least) two aims. First,
the uncertainty about the parameter θ shall be quantified and, secondly, prior knowledge
about θ has to be considered (Gelman et al., 2004, p.11). The uncertainty is quantified
by a distribution function. This formal description does not necessarily imply that the pa-
rameter itself has a variability but there is uncertainty in our knowledge about it. If we use
the available information before sampling (e.g. former investigations, expert opinions) we
can define a prior (density) function π(θ).

The prior knowledge can be quite poor. For instance, the only information could be
that it is a binomial parameter within the bounds [0, 1]. The sampling results enter in
the form of the function f(x|θ) which is mathematically identical to the likelihood func-
tion l(θ|x). The prior function is amalgamated with the likelihood in a kind of updating
mechanism. The resulting posterior function can be written in the well-known form (Gill,
2002, p.66)

f(θ|x) =
π(θ)f(x|θ)

m(x)
.

The function m(x) has the role of an integrating constant and is given by

m(x) =

∫
π(θ)f(x|θ)dθ .

It can be used to calculate probabilities of sampling results based on the prior function
and is therefore also called the prior predictive function (Gill, 2002, p.66). The Bayesian
pendant for the confidence interval is the so-called credibility interval (CI) (Robert, 2001,
p.260). It has a length d and a certain probability mass, also called coverage cov. There
are several methods for constructing credibility intervals (Gelman et al., 2004, p.37). One
way is to define so-called highest posterior density (HPD) intervals, which can easily be
obtained by intersecting a line parallel to the x-axis with the density function but are not
easy to compute. In case of the binomial parameter θ, which will henceforth be called p,
the CI has the bounds [pu, po]. This leads to the following definitions, based on a posterior
function1,

d = po − pu , 0 ≤ d ≤ 1

1For probability density or distribution functions (PDF) a lower case letter (e.g. f ) will be used, for the
cumulative distribution function (CDF) the upper case letter (e.g. F ).
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and
cov =

∫ po

pu

f(p|x)dp = Fpost(po)− Fpost(pu) , 0 ≤ cov ≤ 1 .

Coverage cov and length d have a positive interrelation. For a given prior or poste-
rior function higher coverage implies a wider interval i.e. higher d. In Figure 1 this is
illustrated by four cases with different prior functions and sample results:

• case 1: prior Beta(1,1), sample (n = 5, x = 2),

• case 2: prior Beta(1,1), sample (n = 50, x = 20),

• case 3: prior Beta(2,10), sample (n = 5, x = 2),

• case 4: prior Beta(2,10), sample (n = 50, x = 20).

Case 1 has the least information, therefore its slope is lower than that of the other cases.

Figure 1: Coverage and length for different prior-sample-scenarios.

3 Loss Functions
As mentioned in the introduction, the results of a monitoring or surveillance system will
have implications. High prevalence may afford expensive health programs, costs of ad-
ditional sampling etc. This could be based on national laws or on recommendations of
international organizations (e.g. WHO). In case of low prevalence these costs might be
reduced. Due to imperfect information three different situations can occur (Marinell and
Steckel-Berger, 2001, p.374):
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Correct estimation: The true value p equals the estimated parameter p̂, resp. lies within
the interval CIp [pu, po].

Underestimation: The true value p is larger than the estimated parameter p̂, resp. larger
than the upper bound po.

Overestimation: The true value p is smaller than the estimated parameter p̂, resp. smaller
than the lower bound pu.

Both cases, over- and underestimation, may lead to wrong actions. Overestimation might
require unnecessary additional programs (eradication programs, additional sampling costs).
On the other hand underestimation may have negative long-term consequences if for in-
stance infected animals or food is detected in other countries. This might lead to import
bans, negative worldwide publicity and therefor negative economic impacts. There might
as well be positive consequences, which can be considered by just looking at the net ef-
fects. Since the decisions are dependent on the realization of the parameter, loss-functions
can be defined (Berger, 1985, p.8; Robert, 2001, p.52). The equations for the point esti-
mate are (Marinell and Steckel-Berger, 2001, p.374)

s(p̂, p) =





0 , if p̂ = p ,
su(p̂− p)r , if p̂ > p ,
so(p− p̂)r , if p̂ < p .

Depending on the exponent r the loss function is called constant (r = 0), linear (r = 1) or
quadratic (r = 2) (French and Insua, 2000, p.150). If the loss coefficients su and so are not
equal the loss function is asymmetric. In case of su > so the possibility of overestimation
is judged higher than that of underestimation. The loss functions for an interval estimate
are quite similar (Marinell and Steckel-Berger, 2001, p.385)

s(pu, po, p) =





0 , if pu ≤ p ≤ po ,
su(pu − p)r , if pu > p ,
so(p− po)

r , if po < p .

In a decision theoretic approach one tries to find optimality conditions to minimize the
expected loss (Raiffa and Schlaifer, 1961). These so-called Bayes rules for the optimal
point estimate are formulated in the following way (for a detailed description see Marinell
and Steckel-Berger, 2001, p.375ff)

constant loss function: sufp(p̂− ε) = sofp(p̂ + ε) , where 0 < ε < 1/2

linear loss function: suFp(p̂) = so(1− Fp)(p̂)

quadratic loss function: suL
p̂
0(p) = soL

1
p̂(p) .

Lp̂
0(p) and L1

p̂(p) are the lower and upper linear partial moments. For a continuous random
variable X partial moments are defined as (Marinell and Steckel-Berger, 2001, S. 254)

lower (left) partial moment: mu
r (c) =

∫ c

−∞
(c− x)rf(x)dx ,

upper (right) partial moment: mo
r(c) =

∫ ∞

c

(x− c)rf(x)dx .
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For a linear partial moment r = 1. The equivalent conditions for the interval estimate are

constant loss function: f(pu) = (so/su)f(po) ,

linear loss function: F (pu) = (so/su)(1− F (po)) ,

quadratic loss function: Lu
pu

= (so/su)L
o
po

.

Figure 2 illustrates how to find the loss optimal interval in case of a linear loss function.
The starting point is the distribution function F (pu) that is shifted by the specified length
d along the p-axis. The intersection of this new curve F ′(pu) with the curve 1 − F (po)
gives the optimal interval in case of a symmetric loss function (case 1, so/su = 1). If an
asymmetric loss function is applied, the optimal interval is shifted upward because F ′(pu)
has to be intersected with so/su(1 − F (po) (case 2). If su > so there would of course be
a downward shift. In case 1 the interval [0.475, 0.525] has a coverage of 16.6%, in the
asymmetric case 2 the interval [0.519, 0.569] has a coverage of 15.6%. The effect on the
change of coverage strongly depends on the skewness of the basic distribution function.
With right-skewed functions an increase of the loss ratio so/su reduces the coverage.

Figure 2: Interval estimate for linear loss function (d = 0.05, so/su = 2).

4 Sample Size Determination

4.1 Interval-based Approaches
Note, that it is also possible to specify a certain coverage and then look at the resulting
interval length. For a given coverage the length d can only be reduced by increasing the
sample size. For the problem of the optimal sample size different solutions within the



62 Austrian Journal of Statistics, Vol. 35 (2006), No. 1, 57–66

Bayesian framework have been developed. One way is to evaluate the additional cost
or utility of a sampling unit (expected value of sample information, see Marinell and
Steckel-Berger, 2001; Raiffa and Schlaifer, 1961). The practical disadvantage of this
approach is that it requires a cost- or utility-function that can be compared with the losses
so and su. Another method is more in the classical direction of calculating sample sizes
for specified confidence levels and tolerances, the so-called interval-based approaches
(Joseph and Wolfson, 1997). Their common basis is the cov-d-relationship described in
Figure 1. This relationship is defined for a prior function and a certain sample outcome
(n; x). For a sample of size n there are n + 1 possible results for x, thus n + 1 possible
cov-d-curves. Joseph et al. (1995) suggested the average coverage criteria (ACC) and
the average length criteria (ALC). Both are based on marginal probabilities of the sample
results that can be derived from the prior predictive function

ACC: cov(n) =
n∑

x=0

cov(x)m(x) ,

ALC: d(n) =
n∑

x=0

d(x)m(x) .

An example is given in Table 1. To determine the optimal sample size based on one of
the criteria it is necessary to calculate cov and d for several values of n, which can be
depicted by ACC- and ALC-curves.

Table 1: Calculation of ACC and ALC (n = 5, Prior: Beta(2,10))

x 0 1 2 3 4 5
cov (d = 0.1) 0.485 0.437 0.385 0.353 0.333 0.322 cov = 0.446
d (cov = 0.95) 0.264 0.326 0.374 0.407 0.433 0.447 d = 0.310
m(x) (%) 45.99 32.66 15.06 5.02 1.14 0.14

4.2 Integrative approach
The concept of asymmetric loss functions and interval-based sample size determination
are now integrated. Based on a prior function and a loss function (loss relation, type) a
coverage resp. the length d has to be specified. Then for a certain sample size n the distinct
optimal intervals are numerically determined and finally the average coverage (average
length) is calculated. This has to be repeated for several sample sizes. For the sake of
illustration ACC- and ALC-curves for various loss relations (0.2, 1, 2, 5) are shown in
Figure 3 and 4. Table 2 provides the threshold values of n, where an accepted average
coverage of 0.95 (average length of 0.1) for different loss relations so/su is reached.

4.3 Diagnostic Errors
Measurements are done by diagnostic tests, which are characterized by their sensitivity
(SE) and specificity (SP). Sensitivity is the probability of getting a positive result for a true
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Figure 3: ACC-curve for various loss relations (quadratic, d = 0.1, prior: Beta(2, 10)).

Figure 4: ALC-curve for various loss relations (quadratic, cov = 0.95, prior: Beta(2, 10)).

positive subject, specificity the probability of getting a negative result for a true negative
subject. Hence the probability pf of getting test-positive outcomes as a biased measure
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Table 2: Optimal sample sizes.

so/su 0.2 1 2 5
cov = 0.95 =⇒ d = 0.1 180 178 181 204
d = 0.1 =⇒ cov = 0.95 205 201 211 235

for the true prevalence p is

pf = p SE + (1− p)(1− SP) .

This transformation has a deep impact on the distribution function of p. It can be shown
that the transformed density function f(pf ) has a lower variance than the unbiased func-
tion f(p) (Stüger, 2004). The biased sample results give a picture of false certainty.
Therefore the equation for the posterior function has to be corrected in the following way
(Rahme et al., 2000)

f(p|x, SE, SP) ∝ f(p)[p SE + (1− p)(1− SP)]x[(p(1− SE) + (1− p)SP](n−x) .

It is natural within the Bayesian framework also to include uncertainty about the test
characteristics themselves by prior functions for SE and SP. The next equation shows the
joint posterior function for p, SE and SP

f(p|x, SE, SP) ∝ f(p)f(SE)f(SP)[p SE+(1−p)(1−SP)]x[(p(1−SE)+(1−p)SP](n−x) .

To obtain the posterior marginal distribution of p the test characteristics SE and SP have
to be integrated out

f(p|x) =

∫ ∫
f(p, SE, SP|x)dSEdSP .

This allows to correct the posterior function for the bias of misclassification and then to
proceed in the aforementioned way. Figure 5 shows the effect of specificity. Decreasing
values of SP (here from 1 to 0.8) afford a higher sample size to get same amount of
credibility.

Figure 6 illustrates the effect of incorporating uncertainty about SE and SP. In case
(2) uniform prior distributions for both parameters have been used. In case (3) PERT-
functions have been applied, which are quite usual in the context of Bayesian veterinary
epidemiology. These are modified Beta-functions with a given minimum, mode and max-
imum (Audige and Beckett, 1999). The picture illustrates the dramatic effect of additional
uncertainty in prior knowledge, which affords quite a lot more of sample information.

5 Final Remarks
We showed how prior knowledge about prevalence but also characteristics of diagnostic
tests are used for sample size determination in sample based monitoring systems in con-
junction with asymmetric loss functions. The combination of loss functions and Bayesian
interval-based approaches allows to include the relative evaluation of negative effects in
case of over- or underestimation. The approach described can also account for the mis-
classification due to an imperfect diagnostic test which leads to increased sample sizes.
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Figure 5: ACC-curves for various constant values of SP; d0 = 0.1, prior: Beta(5, 50),
quadratic loss (so/su = 2), SE = 1.

Figure 6: ACC-curves with test uncertainties; prior: Beta(2, 10), d0 : 0.1, constant loss,
(sr = 2).
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