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Abstract: Grouped data, such as repeated measures and longitudinal data,
are increasingly collected in different areas of application, as varied as clin-
ical trials, epidemiological studies, and educational testing. It is often of
interest, for these data, to explore possible relationships between one or more
response variables and available covariates. Because of the within-group cor-
relation typically present with this type of data, special regression models
that allow the joint estimation of mean and covariance parameters need to be
used. Two main approaches have been proposed to represent the covariance
structure of the data with these models: (i) via the use of random effects, the
so-called conditional model and (ii) through direct representation of the co-
variance structure of the responses, known as the marginal approach. Here
we discuss and compare these two approaches in the context of linear and
non-linear regression models with additive Gaussian errors, using a real data
example to motivate and illustrate the discussion.

Zusammenfassung: Gruppierte Daten, wie wiederholte Messungen und Lon-
gitudinaldaten, werden häufig in den verschiedensten Anwendungsgebieten,
etwa bei klinischen und epidemiologischen Studien und in den Erziehungswis-
senschaften erhoben. Mögliche Zusammenhänge zwischen einer oder mehreren
Responsevariablen und vorhandenen Kovariaten sind oft das Ziel der Unter-
suchung. Um die Korrelation innerhalb der Gruppe zu berücksichtigen, sind
Regressionsmodelle nötig, die eine gemeinsame Schätzung von Mittelwert
und Kovarianzparametern erlauben. Zwei Ansätze wurden vorgeschlagen,
um die Kovarianzstruktur der Daten zu berücksichtigen: (i) durch die Ver-
wendung von zufälligen Effekten, das sogenannte konditionale Modell und
(ii) durch die direkte Repräsentation der Kovarianzstruktur der Responses,
bekannt als das marginale Modell. Hier vergleichen und diskutieren wir beide
Ansätze im Kontext von linearen und nicht-linearen Regressionsmodellen mit
additiven Gaußschen Fehlern anhand eines realen Beispiels.

Keywords: Correlated Data, Clustered Data, Mixed Effects, Random Ef-
fects, Repeated Measures.

1 Introduction
Mixed-effects models are useful in describing relationships between a response variable
and covariates in data that are grouped according to one or more classification factors.
Examples of such grouped data include longitudinal, repeated measures, and multilevel
data, which frequently arise in many areas of application, such as clinical trials, epidemi-
ological studies, and educational testing. Mixed-effects models assume that the form of
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the intra-group model relating the response variable to the covariates is common to all
groups, but some of the parameters that define the model are allowed to vary with group
through the incorporation of random effects. By associating common random effects to
observations in the same group, mixed-effects models flexibly represent the covariance
structure induced by the grouping of the data.

Alternatively, the covariance matrix of the responses may be directly modelled via the
covariance model adopted for the within-group error term (assumed to enter the model
linearly). Of course, both approaches can be used in combination, giving mixed-effects
models considerable flexibility in representing the covariance structure present in grouped
data.

In practice, one is usually interested in jointly estimating the regression model param-
eters (representing the relationship between the response and covariates of interest) and
the covariance parameters, determining the correlation and variance structure of the re-
sponse. The approach based on the use of random effects is called the conditional model,
while the one relying on direct modelling of the within-group error covariance structure
is known as the marginal model.

This paper describes and contrasts the two approaches in the context of linear mixed-
effects (LME) models and nonlinear mixed-effects (NLME) models. A motivating exam-
ple, the Dialyzer data, which will be used for illustration of both the LME and NLME
models, is described in Section 2. In Section 3 it is shown that the two approaches are
equivalent in the context of LME models, in the sense that both can be used to directly
model the covariance matrix of the responses. Section 4 investigates extensions to the
NLME model, in which the effect of the random effects model on the covariance struc-
ture of the response can only be determined approximately. Our conclusions are included
in Section 5.

2 An Example: High-Flux Hemodialyzer

Vonesh and Carter (1992) describe and analyze data measured on high-flux hemodialyzers
to assess their in vivo ultrafiltration characteristics. The ultrafiltration rates (in ml/hr) of
20 high-flux dialyzers were measured at 7 ascending transmembrane pressures (in dmHg).
The in vitro evaluation of the dialyzers used bovine blood at flow rates of either 200 dl/min
or 300 dl/min. These data are available in the NLME library (Pinheiro and Bates, 2000) in
S-PLUS and R.

The plots of the ultrafiltration rates versus transmembrane pressure by bovine blood
flow rate, displayed in Figure 1, reveal that, as expected, the ultrafiltration rate increases
with transmembrane pressure up to a maximum, and that higher ultrafiltration rates are
attained with the 300 dl/min blood flow dialyzers. These plots show a clear correlation in
the measurements made on the same dialyzer and also indicate that the variability in the
ultrafiltration rates increases with transmembrane pressure.

In their original paper, Vonesh and Carter (1992) use a nonlinear model to represent
the relationship between ultrafiltration rate and transmembrane pressure. An alternative
analysis, based on a linear polynomial model, is presented in Littell et al. (1996). Both
analyses use random effects to account for the within-dialyzer correlation, with the latter
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Figure 1: Hemodialyzer ultrafiltration rates (in ml/hr) measured at 7 different transmem-
brane pressures (in dmHg) on 20 high-flux dialyzers. In vitro evaluation of dialyzers
based on bovine blood flow rates of 200 dl/min and 300 dl/min.

also investigating the use of marginal covariance models based on extended linear regres-
sion models. We use this example illustrate and compare the conditional and marginal
model approaches for both the LME model and the NLME model.

3 Linear Mixed-Effects Model
The linear mixed-effects model for a normally distributed response grouped according to
a single factor with M levels, proposed by Laird and Ware (1982), is expressed as

yi = Xiβ + Zibi + εi , (1)

where i is the group index, yi is an ni-dimensional vector of observed responses, Xi and
Zi are known ni × p and ni × q regression matrices corresponding to the p-dimensional
fixed effects vector β and the q-dimensional random effects vector bi respectively, and εi

is an ni-dimensional vector of within-group errors.
The bi are assumed to be independently distributed as N (0,Ψ) and the εi are as-

sumed to be independently distributed asN (0,Λi), independent of the bi. The Ψ covari-
ance matrix may be unstructured or structured – e.g. diagonal (Jennrich and Schluchter,
1986), being parameterized by a set of parameters θ. The Λi matrices are typically as-
sumed to depend on i only through their dimensions, being parameterized by a fixed,
generally small, set of parameters λ – e.g. an AR(1) structure (Box et al., 1994).

Several methods of parameter estimation have been proposed for LME models and we
consider here the two most widely used and available in statistical software: maximum
likelihood (ML) and restricted maximum likelihood (REML). Descriptions and compar-
isons of the various estimation methods used for LME models can be found, for example,
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in Searle et al. (1992) and Vonesh and Chinchilli (1997). For a Bayesian perspective
see Wakefield et al. (1994).

Even though the random effects are useful and intuitive quantities to represent between-
group differences in the coefficients, they are not observable in practice. Therefore, likeli-
hood estimation and inference generally rely on the marginal distribution of the observed
response vectors yi. Because of the linearity of the random effects in the LME model (1),
the assumptions on the random effects and the within-group errors, and the properties of
the multivariate normal distribution, it can be shown that the yi are marginally distributed
as independent N (Xiβ,Σi) random vectors, where the marginal covariance matrix is
given by:

var (yi) = Σi = ZiΨZ′i︸ ︷︷ ︸
random effects

+ Λi︸︷︷︸
within−group error

. (2)

There are two ways in which the LME model (1) can account for within-group corre-
lation and heteroscedasticity (non-constant variance): through the random effects bi and
through the within-group errors εi. Because the random effects bi are fixed by group,
not varying with observation, the within-group observations share the same random ef-
fects and are, therefore, correlated. This is represented by the ZiΨZ′i component of Σi.
Note, also, that the diagonal elements of ZiΨZ′i need not be constant, so that it can also
accommodate heteroscedasticity. This component of the marginal covariance matrix Σi

is the one favored in the conditional model approach, with Λi assuming a simple form
(typically Λi = σ2Ii, with Ii denoting the identity matrix of order ni.)

The within-group error contribution to the marginal covariance matrix is given directly
by Λi, which can be non-diagonal (correlation) and have different diagonal elements (het-
eroscedasticity). In the marginal model approach one sets Σi = Λi, so that the entire
covariance structure is determined by the within-group error.

Of course, in practice, one may use both components in (2) when modelling Σi. For
example, one may use the random effects component to account mostly for the correlation
and the within-group component to account for heteroscedasticity via the use of a variance
function (Pinheiro and Bates, 2000). Some care should be exercised when using both
components in a model, as they may very well compete with each other in explaining the
marginal covariance and lead to nearly or fully overparameterized models.

As a simple example, consider the case of an LME model with a single random in-
tercept, that is, with random effects model given by 1ibi, where bi is a scalar. The cor-
responding random effect component of Σi is then equal to ψ1i1

′
i = ψJi, with Ji rep-

resenting an ni × ni matrix of ones. If we assume a compound symmetry structure for
the within-group covariance, that is, Λi = σ2((1 − ρ)Ii + ρJi), the resulting marginal
covariance would have diagonal terms equal to σ2 + ψ and off-diagonal terms σ2ρ + ψ,
that is, an overparameterized compound symmetry structure. Another example of overpa-
rameterization would result from the use of an unstructured (general) covariance matrix
Λi together with any random effects model.

Conditional on the parameters that determine Σi, the (RE)ML estimate of the fixed
effects β and its covariance matrix are given by

β̂ =

(
M∑
i=1

X′
iΣ

−1
i Xi

)−1 M∑
i=1

X′
iΣ

−1
i yi and var

(
β̂

)
=

(
M∑
i=1

X′
iΣ

−1
i Xi

)−1

. (3)
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The (RE)ML estimates of the parameters determining Σi can not be expressed in closed
form, except in trivial cases, and numerical optimization of the (restricted) likelihood
function must be employed. The MLE of β is then obtained by replacing Σi in (3) with
their corresponding estimates.

Note that both β̂ and its estimated variance depend on the covariance model through
the marginal covariance matrices Σi only. Therefore, methods that lead to similar esti-
mates of the Σi will also lead to similar inferences on the fixed effects, including confi-
dence intervals and tests of hypothesis. Therefore, if the main questions of interest asso-
ciated with the LME model are related to inferences about the fixed effects (like would
be the case in clinical trials, for example), then the conditional and marginal approaches
may lead to equivalent conclusions, provided similar estimates of Σi can be obtained with
both methods. However, if one is interested in issues related to the covariance model, like
inter-subject variability or spatial correlation, it may be that only one of the approaches
can be used to address the specific question of interest. This will, of course, be applica-
tion dependent, so no general recommendations can be made about the greater adequacy
of either approach.

3.1 Dialyzer Example: Linear Model Version

As an empirical model to describe the relationship between the ultrafiltration rates and the
transmembrane pressure in the Dialyzer example of Section 2, Littell et al. (1996) pro-
posed the use of a fourth-order linear mixed-effects polynomial allowing for differences
in the fixed effects between the dialyzers with in vitro ultrafiltration rates of 200 dl/min
and 300 dl/min.

After several model building steps to determine which parameters should vary with
in vitro ultrafiltration class and which should be assigned random effects to accommo-
date the inter-subject variation, the following LME model was chosen to represent the
ultrafiltration rate yij at the jth transmembrane pressure xij for the ith subject.

yij = (β0+γ0Qi+b0i) + (β1+γ1Qi+b1i) xij + (β2+b2i) x2
ij + β3x

3
ij + β4x

4
ij + εij , (4)

bi =




b0i

b1i

b2i


 ind∼N (0,Ψ) , εij

ind∼N (
0, σ2xδ

ij

)
,

where Qi is a binary variable taking values 0 for 200 dl/min hemodialyzers and 1 for
300 dl/min hemodialyzers; β0, β1, β2, β3, and β4 are, respectively, the intercept, linear,
quadratic, cubic, and quartic fixed effects corresponding to 200 dl/min dialyzers; γk is the
blood flow effect associated with the fixed effect βk, k = 0, 1; bi is the vector of random
effects, assumed independent for different i; and εij is the within-group error, assumed
independent for different i, j and independent of the random effects. Different structures
can be used to represent the random effects covariance matrix Ψ, as illustrated further
below. The variance of the εij is allowed to change with the transmembrane pressure ac-
cording to a power model with parameter δ (estimated together with the other parameters
in the model.) This was needed due to heteroscedastic behavior observed in the residuals
from the LME fit with homocedastic within-subject errors.
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The LME model in (4) uses random effects to account for the correlation among
within-subject measurements and some of the heteroscedasticity in the response as well.
An additional variance function model is used for the within-subject error to properly ac-
commodate the observed heteroscedasticity, but the approach can be considered primarily
a conditional model, as discussed previously.

An alternative marginal model to represent the data using the empirical linear polyno-
mial model is given below.

yij = (β0 + γ0Qi) + (β1 + γ1Qi) xij + β2x
2
ij + β3x

3
ij + β4x

4
ij + εij , (5)

εij ∼ N (
0, σ2xδ

ij

)
corr(εij, εik) = ρ|j−k| ,

that is, the same fixed effects and variance function as in (4) are used, but the within-
subject correlation is now modeled by an AR(1) structure in the within-subject errors.
We also considered marginal models similar to (5), but with within-subject correlation
structure given by a Gaussian spatial correlation model with a nugget effect (Pinheiro and
Bates, 2000), an ARMA(1,3) model, and an unstructured model (that is, with 21 different
correlations allowed for the within-subject measurement pairs).

The conditional and marginal models described above for the Dialyzer data were fitted
using, respectively, the functions lme and gls in the NLME library in S-PLUS, with REML
estimation in all cases. Figure 2 shows the scatter plots of the conditional model estimates
for variance and covariance parameters in Σi versus the corresponding estimates using the
different marginal models.
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Figure 2: Conditional versus marginal estimates for variance and covariance parameters
in the Dialyzer linear models. Dotted line represents y = x reference line.
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There is generally good agreement between the estimates from the conditional and
marginal models, with greater discrepancies observed for larger parameter values. The un-
structured correlation marginal model has the best agreement with the conditional model
with regard to the variances, but not the covariances. It is instructive to examine the
estimation results for the fixed effects in each of the models, given below.

## LME fit (conditional model)
Value Std.Error DF t-value p-value

(Intercept) -16.393 0.8273 115 -19.814 <.0001
pressure 90.616 3.2660 115 27.745 <.0001

QB -2.777 0.8278 18 -3.355 0.0035
I(pressure^2) -49.692 4.2295 115 -11.749 <.0001
I(pressure^3) 12.474 2.1509 115 5.799 <.0001
I(pressure^4) -1.277 0.3575 115 -3.573 0.0005
pressure:QB 7.031 0.7856 115 8.949 <.0001

## AR(1) marginal model
Value Std.Error t-value p-value

(Intercept) -16.405 0.8453 -19.406 <.0001
pressure 90.240 3.8747 23.290 <.0001

QB -2.615 0.7399 -3.535 0.0006
I(pressure^2) -48.592 5.0571 -9.609 <.0001
I(pressure^3) 11.802 2.4749 4.769 <.0001
I(pressure^4) -1.153 0.3980 -2.897 0.0044
pressure:QB 6.615 0.8105 8.161 <.0001

## Spatial Gaussian marginal model
Value Std.Error t-value p-value

(Intercept) -16.357 0.7930 -20.626 <.0001
pressure 89.759 3.5459 25.314 <.0001

QB -2.391 0.7441 -3.214 0.0016
I(pressure^2) -48.095 4.5640 -10.538 <.0001
I(pressure^3) 11.663 2.2276 5.236 <.0001
I(pressure^4) -1.144 0.3588 -3.188 0.0018
pressure:QB 6.419 0.8396 7.645 <.0001

## ARMA(1,3) marginal model
Value Std.Error t-value p-value

(Intercept) -16.297 0.7878 -20.686 <.0001
pressure 89.489 3.5166 25.448 <.0001

QB -2.385 0.7351 -3.244 0.0015
I(pressure^2) -47.780 4.5177 -10.576 <.0001
I(pressure^3) 11.534 2.2032 5.235 <.0001
I(pressure^4) -1.127 0.3549 -3.174 0.0019
pressure:QB 6.408 0.8285 7.734 <.0001



38 Austrian Journal of Statistics, Vol. 35 (2006), No. 1, 31–44

## Unstructured marginal model
Value Std.Error t-value p-value

(Intercept) -15.901 0.7827 -20.316 <.0001
pressure 87.770 3.7826 23.203 <.0001

QB -2.027 0.6547 -3.097 0.0024
I(pressure^2) -45.890 5.1765 -8.865 <.0001
I(pressure^3) 10.611 2.6619 3.986 0.0001
I(pressure^4) -0.975 0.4447 -2.192 0.0302
pressure:QB 6.309 0.6930 9.103 <.0001

The fixed effects estimates and respective standard errors obtained in the LME fit are
similar to the estimates obtained in the marginal model fits. The conclusions about the
significance of the model parameters are the same in all five models. The greater dis-
crepancies are observed for the unstructured correlation model with respect to the other
models, but those differences are not pronounced and within the estimated precisions
(overlapping confidence intervals). The main conclusion from the exercise above is that
the conditional and marginal approaches lead to similar inferences about the model pa-
rameters and similar estimated covariance matrices Σ̂i.

4 Nonlinear Mixed-Effects Model
Nonlinear mixed-effects (NLME) models are mixed-effects models in which the response
function is nonlinear in at least some of the underlying parameters. Several different
nonlinear mixed effects models have been proposed in the literature (Sheiner and Beal,
1980; Mallet et al., 1988; Lindstrom and Bates, 1990; Vonesh and Carter, 1992; Davidian
and Gallant, 1992; Wakefield et al., 1994). We adopt here the NLME model proposed
by Lindstrom and Bates (1990), which can be viewed as a hierarchical model that gener-
alizes both the linear mixed-effects model of Section 3 and the usual nonlinear regression
model for independent data (Bates and Watts, 1988). In the first stage, the jth observation
on the ith group is described as

yij = f(φij,xij) + εij , i = 1, . . . , M , j = 1, . . . , ni , (6)

where f is a nonlinear function of a group-specific vector of parameters φij and the vec-
tor of covariates xij , M is the total number of groups, and ni is the number of obser-
vations in the ith group. Like in the LME model (1), the within-group error vectors
εi = (εi1, . . . , εini

)′ are assumed to be independently distributed as N (0,Λi), with the
Λi parameterized by a fixed parameter vector λ. In the second stage the group-specific
parameters are modelled as

φij = Aijβ + Bijbi . (7)

Like in the LME model, β represents the fixed effects and bi the random effects (varying
with i but not with j), which are assumed to be independently distributed as N (0,Ψ).
Aij and Bij are design matrices for the fixed and random effects respectively, which may
depend on the values of some covariates at the jth observation. It is further assumed that
the bi are independent of the εij .
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Different methods have been proposed to estimate the parameters in the NLME model
(Ramos and Pantula, 1995; Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1997);
we concentrate here on methods based on the likelihood function. As in the LME case,
because the random effects bi are unobserved quantities, maximum likelihood estimation
in NLME models is based on the marginal density of the responses y, which is calculated
as

`(β,Ψ,λ|y) =

∫
p(y|b,β,λ) p(b|Ψ) db . (8)

Because the model function f in (6) can be nonlinear in the random effects, the integral
in (8) generally does not have a closed-form expression. To make the numerical opti-
mization of the likelihood function a tractable problem, different approximations to (8)
have been proposed. Some of these methods consist of taking a first-order Taylor ex-
pansion of the model function f around the expected value of the random effects (i.e.,
0) (Sheiner and Beal, 1980; Vonesh and Carter, 1992), or around the conditional modes
of the random effects (b̂i) (Lindstrom and Bates, 1990). We adopt here the approxima-
tion suggested by Lindstrom and Bates (1990), which is implemented via an alternating
algorithm comprising a linear mixed-effects (LME) step and a penalized nonlinear least
squares (PNLS) step. This is the algorithm used in the nlme function of the NLME li-
brary. Inferences on the model parameters, including hypothesis testing, are based on
asymptotic results for the linear mixed-effects log-likelihood used in the LME step of the
alternating algorithm (Pinheiro and Bates, 2000).

Like for the LME model, the marginal covariance matrix of the responses in the
NLME model can be expressed as the sum of two components, one associated with the
random effects and another with within-group errors. Letting f(β,bi,Xi) = [f(φi1, xi1),
. . . , f(φini

,xini
))]′ it follows

var (yi) = Σi = var (f(β,bi,Xi))︸ ︷︷ ︸
random effects

+ Λi︸︷︷︸
within−group error

. (9)

Note that var (f(β,bi,Xi)) depends not only on Ψ, but also on β and Xi. One can
obtain an estimate for this component of the variance by simulating random effects vec-
tors b∗1, . . . ,b

∗
N

ind∼N (0, Ψ̂), calculating the corresponding vectors f(β̂,b∗k,Xi), k =
1, . . . , N , and deriving the associated sample covariance matrix. Alternatively, a first-
order Taylor expansion of f(β, ·,Xi) around bi = 0 can be used to obtain an LME-like
approximation

var (f(β,bi,Xi)) ' Zi(β,Xi)ΨZ′i(β,Xi), where Zi(β,Xi) =
∂f(β,bi,Xi)

∂bi

∣∣∣∣
bi=0

.

The same comments and recommendations discussed in Section 3 for the LME model
also apply here. The conditional approach attempts to explain the covariance structure of
the response mostly via the random effects component of the marginal covariance, while
the marginal approach focuses on the within-group component. Care should be exercised
in not making both components too complex, to avoid overparameterization problems.

Unlike the LME case, however, the marginal covariance in the NLME model also de-
pends on the fixed effects, which makes the problem more complex. In addition, because
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of the need to approximate the likelihood function of the NLME model to make the esti-
mation problem feasible, the relationship between the marginal covariance matrix in (9)
and estimation results for the fixed effects is not as clear cut as in the LME model case.
Another important difference worth pointing out between the conditional and marginal
models in the nonlinear case is in the interpretation of the parameters β. In the condi-
tional model, the fixed effects are associated with the response of typical individual (i.e.,
with bi = 0), while in the marginal model, these parameters are associated with the
average response across the individuals in the population.

4.1 Dialyzer Example: Nonlinear Model Version

An empirical fourth-order linear polynomial model proposed by Littell et al. (1996) was
used in Section 3.1 to represent the Dialyzer data. The model originally proposed for
these data by Vonesh and Carter (1992) is an asymptotic regression model with an offset,
which expresses the expected ultrafiltration rate y at transmembrane pressure x as

E (y) = φ1 {1− exp [− exp(φ2) (x− φ3)]} . (10)

Unlike the parameters in the empirical linear model of Section 3.1, the parameters in
model (10) have a physiological interpretation: φ1 is the maximum ultrafiltration rate that
can be attained, φ2 is the logarithm of the hydraulic permeability transport rate, and φ3 is
the transmembrane pressure required to offset the oncotic pressure.

Vonesh and Carter (1992) suggest using different parameters in (10) for each blood
flow rate level. After several model building steps, the following NLME version of (10)
was selected to represent the ultrafiltration rate yij at the jth transmembrane pressure xij

for the ith subject

yij = (β1 + γ1Qi + b1i) {1− exp [− exp (β2 + γ2Qi + b2i) (xij − β3)]}+ εij , (11)

bi =

[
b1i

b2i

]
ind∼N (0,Ψ) , εij

ind∼N (
0, σ2xδ

ij

)
,

where, as in Section 3.1, Qi is a binary indicator taking values 0 for 200 dl/min hemodia-
lyzers and 1 for 300 dl/min hemodialyzers; β1, β2, and β3 are, respectively, the asymptotic
ultrafiltration rate, the log-transport rate, and the transmembrane pressure offset fixed ef-
fects corresponding to 200 dl/min dialyzers; γk is the blood flow effect associated with
the fixed effect βk, k = 1, 2; bi is the vector of random effects, assumed independent for
different i; and εij is the within-group error, assumed independent for different i, j and
independent of the random effects. The variance of the εij is allowed to change with the
transmembrane pressure according to a power model with parameter δ (estimated together
with the other parameters in the model.)

Random effects are used in the NLME model (11) to account for within-subject cor-
relation, as well as some of the heteroscedasticity in the response. A variance function
model is used in the within-subject covariance matrix Λi to accommodate the remaining
heteroscedasticity in the data. Overall, this approach falls within the conditional model
category.
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Alternatively, a marginal nonlinear regression model, without random effects, can be
used to represent the data.

yij = (β1 + γ1Qi) {1− exp [− exp (β2 + γ2Qi) (xij − β3)]}+ εij , (12)

εij
ind∼N (

0, σ2xδ
ij

)
, corr(εij, εik) = ρ|j−k| .

This model has the same fixed effects and variance function as (11), but the correlation
among measurements is now modelled by an AR(1) structure in the within-subject errors.
As in the linear model analysis of Section 3.1, three additional marginal nonlinear models
similar to (5) were considered, with within-subject correlation structures: Gaussian spatial
correlation with a nugget effect, ARMA(1,3), and unstructured.

The conditional and marginal models described above were fitted using, respectively,
the functions nlme and gnls in the NLME library in S-PLUS, with approximate ML es-
timation for the NLME model and exact ML estimation for the marginal models. The
simulation approach outlined previously (based on sampling random effects from their es-
timated distribution) was used to estimate the marginal covariance matrices in the NLME
model. Note that, because of the dependency of Σi on β, different matrices are obtained
for 200 dl/min and 300 dl/min dialyzers. For simplicity, we consider here the 200 dl/min
dialyzer estimates.
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Figure 3: Conditional versus marginal estimates for variance and covariance parameters
in the Dialyzer nonlinear models. Conditional model estimates correspond to 200 dl/min
dialyzers. Dotted line represents y = x reference line.
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Figure 3 shows the scatter plots of the conditional model estimates for variance and
covariance parameters in Σi associated with 200 dl/min dialyzers versus the correspond-
ing estimates using the different marginal models.

There is now considerably less agreement between the estimates from the conditional
and marginal models than in the linear model case depicted in Figure 2. This is consistent
with the fact that, for nonlinear models, the two approaches are not equivalent, leading to
different representations of the marginal covariance structures. As in the linear case, it is
instructive to investigate the impact of the different models in the estimation of the fixed
effects.
## NLME fit (conditional model)

Value Std.Error DF t-value p-value
Asym.(Intercept) 46.133 1.2359 116 37.326 <.0001

Asym.QB 16.974 1.8689 116 9.082 <.0001
lrc.(Intercept) 0.658 0.0598 116 10.992 <.0001

lrc.QB -0.454 0.0796 116 -5.702 <.0001
c0 0.217 0.0035 116 62.971 <.0001

## AR(1) marginal model
Value Std.Error t-value p-value

Asym.(Intercept) 46.911 1.5343 30.576 <.0001
Asym.QB 16.400 2.4104 6.804 <.0001

lrc.(Intercept) 0.542 0.0538 10.069 <.0001
lrc.QB -0.339 0.0748 -4.538 <.0001

c0 0.215 0.0043 50.527 <.0001

## Spatial Gaussian marginal model
Value Std.Error t-value p-value

Asym.(Intercept) 47.122 1.6343 28.833 <.0001
Asym.QB 15.877 2.6108 6.081 <.0001

lrc.(Intercept) 0.502 0.0572 8.775 <.0001
lrc.QB -0.301 0.0807 -3.731 3e-04

c0 0.214 0.0042 50.653 <.0001

## ARMA(1,3) marginal model
Value Std.Error t-value p-value

Asym.(Intercept) 47.037 1.5952 29.487 <.0001
Asym.QB 15.955 2.5515 6.253 <.0001

lrc.(Intercept) 0.510 0.0568 8.976 <.0001
lrc.QB -0.308 0.0802 -3.835 2e-04

c0 0.214 0.0042 50.476 <.0001

## Unstructured marginal model
Value Std.Error t-value p-value

Asym.(Intercept) 47.229 1.3340 35.405 <.0001
Asym.QB 15.938 2.1380 7.455 <.0001

lrc.(Intercept) 0.451 0.0485 9.289 <.0001
lrc.QB -0.274 0.0683 -4.017 1e-04

c0 0.209 0.0041 50.672 <.0001
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Even though there are noticeable differences in the estimates of the marginal covari-
ance matrices, the fixed effects estimates obtained via the marginal and conditional ap-
proaches are fairly similar and lead to the same inferences about the differences between
the two types of dialyzers. The greater discrepancies are observed between the unstruc-
tured marginal model and the NLME conditional model, but even these are not of consid-
erable magnitude.

5 Conclusions

This paper describes and contrasts the conditional and marginal modelling approaches in
the context of linear and nonlinear regression models. In the linear case, the marginal
covariance matrix corresponding to the responses in a linear mixed-effects model is ex-
pressed as a sum of two components: one determined solely by the random effects model
(associated with the conditional approach) and another determined by the within-group
error covariance (associated with the marginal approach.) The two approaches are equiv-
alent in the sense that they directly model the marginal covariance of the responses and
that both can use the same estimation method (maximum likelihood or restricted maxi-
mum likelihood.)

In the nonlinear case, however, the association between random effects model and the
marginal covariance matrix is less direct, depending also on the fixed effects model. In
addition, because the random effects typically occur nonlinearly in an NLME model, for
computational reasons exact likelihood methods are seldom used. Likelihood methods, on
the other hand, can be easily implemented with the marginal approach. As a consequence,
the two approaches can not be considered as equivalent, even though similar inferences
on the fixed effects are usually obtained.

Perhaps the most important differences between the two approaches have to do with
the questions that they are intended to answer. If the primary questions of interest refer to
the fixed effects only, then, depending on the choice of random effects and within-group
covariance, both methods could be equivalent in the linear case, and generally nearly
equivalent in the nonlinear case. However, if one is interested in using predicted random
effects to explore the impact of covariates on inter-subject variation, like is often done in
pharmacokinetics/pharmacodynamics modeling (Davidian and Giltinan, 1995), then the
conditional approach would be the natural choice.
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