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Abstract: In this paper conditional modelling of annual maxima for predict-
ing flood water is considered. The aim is to predict flood water of rivers,
where no data about discharge but data about properties of the catchment of
the rivers are available. A generalized linear mixed model is used to model
the annual maxima depending on properties of the catchment and to take the
correlation among measurements of one year into account. The fitted means
and variances according to this model are plugged into the method of mo-
ment estimates of the parameters of the Gumbel distribution to obtain some
extreme quantiles. These quantiles are commonly used to predict flood water
of rivers. This approach is applied to data from Styria (Austria). The result is
a satisfactory model for predicting flood water for rivers, where no data about
the discharge are available.

Zusammenfassung: In diesem Beitrag wird das bedingte Modellieren von
jährlichen Maxima zur Vorhersage von Hochwasser betrachtet. Das Ziel ist
es die Höhe von Hochwasser von Flüssen vorherzusagen, bei denen keine
Daten bezüglich des Abflusses aber bezüglich der Eigenschaften der Einzugs-
gebiete der Flüsse existieren. Es werden generalisierte lineare Mischmod-
elle verwendet um einerseits die jährlichen Maxima in Abhängigkeit von den
Eigenschaften der Einzugsgebiete zu modellieren und anderseits die Korre-
lation zwischen den jährlichen Maxima verschiedener Flüsse eines Jahres
zu berücksichtigen. Die geschätzten Erwartungswerte und Varianzen unter
diesem Modell werden in die Momentenschätzer der Parameter der Gumbel
Verteilung eingesetzt, um Schätzer für extreme Quantile zu erhalten. Diese
Quantile werden häufig verwendet um Hochwasser von Flüssen vorherzu-
sagen. Diese Methode wurde an Flüssen in der Steiermark (Österreich) ange-
wendet. Das Resultat ist ein zufriedenstellendes Modell zur Vorhersage von
Hochwasser für Flüsse, bei denen keine Abflussdaten zur Verfügung stehen.

Keywords: Gumbel Distribution, Generalized Linear Mixed Model, Random
Effects, Annual Maxima.

1 Introduction
Annual maxima of the discharge of a river are commonly used to predict flood water.
In this paper annual maxima from several rivers are modelled to predict flood water for
rivers, where no data about the discharge are available.

The analyzed data are annual maxima of discharge from rivers in Styria (Austria).
In hydrology it is well known, that the discharge and hence the annual maxima are in-
fluenced by the properties of the catchment of a river. Such a catchment is defined as
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the area of the landscape, where all the rain falling on this area discharges into the river.
These properties can be easily obtained from a Geographic Information System (GIS)
and are available for any river in Styria. Thus, the idea was to model annual maxima
depending on these properties to obtain an appropriate model for predicting flood wa-
ter. Because the distribution of such annual maxima is certainly non-normal, we do not
consider any linear regression models. However, modelling can be done within the con-
text of quasi-likelihood estimation in the generalized linear model (GLM) framework. To
take the correlation among observations of different rivers at one year into account, the
model is augmented with a random effect, which leads to the broad class of generalized
linear mixed models (GLMMs). First analysis of the annual maxima indicates, that it
is reasonable to assume temporal independence over the years. Therefore, only spatial
dependency of the data is considered. The fitted values are plugged into the method of
moment estimator of the parameters in the extreme value distribution to obtain estimates
of certain quantiles. These are often used to predict flood water. This approach provides
satisfactory estimates of flood water and can be applied for rivers, where only data about
the properties of the catchment are available.

The analysis of extreme values has a long history and goes back to the traditional
approach introduced by Gumbel (1958). There is an enormous literature on this topic,
especially applied on environmental data such as rainfall and river heights. Davison and
Smith (1990) presented a method for modelling univariate extremes in dependency of
explanatory variables. Their approach is based on the exceedance over a threshold, with
the assumption, that the difference between the observations and the threshold follow a
generalized Pareto distribution. An extension to multivariate extremes is given in Coles
and Twan (1991) and this technique is later on applied to extremes of areal rainfall in
Coles and Twan (1996). In this work the extremes were modelled by means of explanatory
variables taking their spatial dependence into account. A critical point of these models
is the choice of a suitable threshold. If this value is chosen too large, then only some of
the data exceed this value and all of them can be considered as extremes. If the value
is, however, small, then we have many observations above it but most of them are not
extremes at all. To avoid this problem we develop a method based on the classical extreme
value theory, which additionally takes the spatial dependence into account.

2 Classical Extreme Value Theory
By means of classical extreme value distributions we are often able to analyze the statis-
tical behavior of

y = max{x1, . . . , xn} ,

where x1, . . . , xn is a sequence of independent identically distributed (i.i.d.) random vari-
ables having some distribution function F . Such a sequence usually represents values
measured on a regular time scale. In our application, these xi’s (i = 1, . . . , n = 365)
represent daily measured maxima of discharge of a river, so that y is the annual maximum
of the discharge. As y is the maximum of a block of values, it is often denoted as block
maximum. In general F is unknown and therefore the distribution function G of y can
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not be calculated exactly. But for large n (as in our case), the block maximum y follows
one of three extreme value distributions, known as the Gumbel, Fréchet and Weibull dis-
tribution (Coles, 2001). These three distributions can be combined into a single family of
distributions, the Generalized Extreme Value (GEV) family, with distribution function

G(y|λ, ν, ξ) = exp

{
−

[
1 + ξ

(
y − λ

ν

)]−1/ξ
}

defined on the set {y | 1 + ξ(y− λ)/ν > 0}, where the parameters satisfy −∞ < λ < ∞,
ν > 0 and −∞ < ξ < ∞ and are usually referred to as the location, scale and shape
parameter, respectively. In this parametrization the cases of ξ > 0 and ξ < 0 correspond
to the Fréchet and Weibull distribution, respectively. The special case ξ = 0 is known as
the Gumbel distribution with distribution function

G(y|λ, ν) = exp

{
− exp

[
−

(
y − λ

ν

)]}
. (1)

The theoretical moments according to this distribution are

E(Y ) = λ + νγ , and var(Y ) = ν2π2/6 , (2)

where γ ' 0.57722 is Euler’s constant.
The advantage of this parametrization is, that for estimating the parameters no prior

knowledge about the distribution of y is necessary. The data themselves determine, which
of these three distributions is appropriate. Thus, we first fit a model allowing for all three
parameters and then we subsequently test for the necessity of the shape parameter (Hosk-
ing, 1984). Because there is strong evidence that the annual maxima in our application
follow a Gumbel distribution, we restrict our attention only onto this special member of
the GEV family in the remainder.

Consider now a random sample of n annual maxima y = (y1, . . . , yn) from a Gumbel
distribution (1). Then the log likelihood function of this sample is

`(λ, ν | y) = −n log ν −
n∑

i=1

(
yi − λ

ν

)
−

n∑
i=1

exp

(
−yi − λ

ν

)
. (3)

To find the maximum likelihood (ML) estimates, the derivatives of (3) with respect to the
parameters λ and ν

∂`(λ, ν|y)
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− 1
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[
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,

have to be solved. There is no analytical solution to the system of these two equations,
but standard iterative optimization methods can be applied in a straightforward way. An
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alternative method based on the empirical mean and variance is the method of moments.
The theoretical moments in (2) yield estimates

λ̂ = ȳ − ν̂γ , and ν̂ =
√

6s2
y/π

2 , (4)

where ȳ and s2
y denotes empirical mean and variance of our sample y.

A common question in hydrology is: What is the highest level the flood water will
exceed once every T years? This is often denoted as T -year threshold or return level. In
extreme value theory this return level is defined as the quantile yq with q = 1 − 1/T ,
i.e. G(yq|λ, ν) = 1 − 1/T . Thus, in order to predict extreme flood water of a river for
several return periods T , we are very interested in some extreme quantiles of a Gumbel
distribution. These quantiles are obtained by inverting (1) resulting in

yq = λ− ν log{− log(1− 1/T )} , (5)

where G(yq|λ, ν) = 1− 1/T and T is the return period of interest. For example, if yi are
annual maxima and the given return period is T = 100 years, then yq is the level, which
is expected to exceed once every 100 years.

If we are interested in predicting flood water for a specified return period, we first
estimate the parameters and then plug them into the quantiles (5) (see e.g. Coles, 2001).
Of course this is only possible, if concrete data on such annual maxima are available.
Sometimes there is only information about catchment properties available. In such cases
it would be very useful to have some knowledge about the relationship between annual
maxima of the discharge of the river and properties of the corresponding catchment.

3 Modelling Annual Maxima
Now the focus is on modelling the mean of non-identically distributed annual maxima to
later use these estimates in the return levels (5).

Consider block maxima yit of i = 1, . . . , n rivers observed at time t. This can be an-
nual maxima of several years from different rivers. It is assumed, that the maxima yit of
a subject are independent and Gumbel distributed, that is yit

ind∼ Gumbel(λi, νi). Further-
more, we assume that the parameters λi and νi of two different subjects are independent.
Additionally, some explanatory variables xit = (xit1, . . . , xitp) are observed. The idea is
to estimate the mean and the variance of yit depending on such explanatory variables and
plug this estimates into the method of moment estimates of the parameters of the Gumbel
distribution. If the mean-variance relationship of yit is known, then it can be modelled
by a quasi-likelihood approach (Wedderburn, 1974) within the GLM framework (McCul-
lagh und Nelder, 1989). In such GLMs the mean of a response variable is modelled as a
function of the linear predictor, i.e.

E(yit) = µit = g−1(xitβ) ,

where β is the p-dimensional column vector of interest and g(·) is the so called link
function, which links the linear predictor to the mean. The variance of yit is assumed to
be proportional to a specified function of the mean and is thus given by

var(yit) = φV (µit) .
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We call V (·) the variance function and φ the dispersion parameter which may be known
or unknown.

Now, we allow observations from different rivers but observed at the same time t to
be positively correlated, i.e. cor(yit, yjt) > 0. There are two ways to take this correlation
into account. If the focus of the analysis is on the population average, the quasi-likelihood
approach can be generalized by allowing a very general form of the variance structure
of yit (Fitzmaurice et al., 2004). In this case the marginal mean is modelled and the
model can be fitted by Generalized Estimating Equations (GEEs). Here we consider a
second way where the subject specific analysis is of main interest. Thus, the mean is
conditionally modelled by augmenting the GLM with a random factor for each year, say
zt. This combination of fixed effects β and random effects zt defines a GLMM. In contrast
to GLMs, in GLMMs the conditional mean of yit given the random effect zt is modelled.
Hence, we consider

E(yit|zt) = g−1(xitβ + zt) .

Here, zt is a random intercept specific for time t and is assumed to follow a normal
distribution with zero mean and variance σ2

z , i.e. zt
iid∼ N(0, σ2

z). Note, that this additional
random effect induces correlation between observations from different rivers but made at
the same time t. The model can be fitted either by the penalized quasi-likelihood (PQL)
approach as discussed in Breslow and Clayton (1993) or by applying the EM-Algorithm
of Dempster et al. (1977). If the dispersion parameter φ is unknown, it has to be estimated,
too. A usual estimator is the mean Pearson statistic.

Once the parameters β and φ are estimated, the random effects can be predicted by
the best linear unbiased predictor (BLUP) which is

ẑt = E(zt|yit, β̂, φ̂)

and coincides with the empirical Bayes predictor. Thus the estimated conditional mean is

Ê(yit|zt) = g−1
(
xitβ̂ + E(zt|yit, β̂, φ̂)

)
.

Note, that this estimates the conditional mean given the random effects. The marginal
mean is obtained by integrating out the random effect and is given by

E(yit) = Ez

[
g−1(xitβ + zt)

]
.

In the case of a log-link we have

E(yit) = exp [xitβ + log M(ezt)] , (6)

where M(·) is the moment generating function of zt with log M(ezt) = σ2
z/2. Substituting

this in (6) leads to the marginal mean of yit

E(yit) = exp
[
xitβ + σ2

z/2
]

.

To obtain an estimator of the time invariant mean E(yi) for river i an appropriate
summary statistic has to be applied. In case of time invariant explanatory variables, i.e.
xit1 = xit2 for all t1 6= t2, the equation

µi = E(yi) = E(yit)
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holds, because the shift in the intercept, σ2
z/2, is constant over time.

Now, for a given mean-variance relationship the estimated mean µ̂i and variance
φ̂V (µ̂i) can be plugged into the method of moment estimates of the parameters of the
Gumbel distribution and the return level based on this approach can be estimated. In par-
ticular cases, the calculation of the return values can be simplified. Consider a quadratic
mean-variance relationship, as it is the case for Gamma distributed responses. Then the
estimates (4) based on the fitted mean µ̂i and variance φ̂V (µ̂i) are

λ̂ = µ̂

(
1− γ

π

√
6φ̂

)
, and ν̂ = µ̂

1

π

√
6φ̂ (7)

and the return levels (5) simplify to

ŷq = µ̂

[
1 +

1

π

√
6φ̂ [γ + log(− log(1− 1/T ))]

]
. (8)

This approach allows to predict return levels based on the estimation results of GLMMs.

4 Application
The data analyzed in this study are annual maxima of discharge measured at 102 rivers in
Styria, Austria. The lengths of the observation times are between 10 and 52 years, giving
an unbalanced data set. Empirical analysis suggested that the annual maxima follow a
Gumbel distribution. For each river, there are various properties of its catchment avail-
able. Amongst these properties there is the catchment’s area, the mean altitude dtm, the
average amount of rain in this area, drainage density gd and types of land use, like the
proportions of forest and no-vegetation (noveg). The idea now is to model the annual
maxima in terms of these properties, because this information can be easily obtained from
a GIS for any river in Styria. Thus, the mean annual maximum is assumed to be a function
of these properties. Because the hydrogeological conditions are also relevant, the rivers
were grouped into five homogeneous regions. Assuming that the annual maxima of a
river are uncorrelated over time and that the annual maxima of different rivers in the same
year are also uncorrelated, the mean response is analyzed within the framework of ordi-
nary GLMs. For this purpose an appropriate link function and a suitable mean-variance
relationship has to be specified. A log-link model is applied because the mean discharge
of a river has to be a positive quantity. To get a first glimpse of the true mean-variance
relationship, we generate the scatter-plot of river specific empirical means against their
variances in Figure 1. The point pattern reveals a quadratic mean-variance relationship,
which is estimated by the function 0.215µ2. Because of that, a quasi-likelihood approach
is utilized based on a log-link model for the mean and on a quadratic variance function for
the responses. A variable selection procedure was then applied to select the best fitting
set of explanatory variables. Finally we found the model

log(µ) = region ∗
(

log(area)+noveg+rain+gd+dtm+forest+dtm.forest
)

,

with dtm.forest =
√
dtm · forest. This model results in an estimated dispersion pa-

rameter of φ̂ = 0.267, which is slightly larger than the estimate from fitting a quadratic
curve through the empirical means/variances in Figure 1.
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Figure 1: Empirical means and variances of annual maxima from 102 rivers and a fitted
quadratic (variance) model through these points.

Table 1: Estimated intercept and standard error for each region.
Region 1 2 3 4 5
β0 −9.36 19.77 −5.14 0.57 −2.27
s.e. 1.35 5.81 0.57 0.67 0.66

However, as the annual maxima of discharge usually result from heavy rain storm
events, we should expect that observations from the same year are presumably positively
correlated. This might be due to the fact that heavy rain storms are not restricted to a small
area or to a single catchment of a river. Thus, this spatial correlation should be taken
into account and considered in the model. We extend the model just found before and
incorporate some additional random effects which are specific for each year. Therefore,
the considered model includes an intercept for each region, region specific coefficients for
all explanatory variables and an random intercept for each year. In Table 1 estimates of
the region specific intercepts are listed. The estimated coefficients in the reference region
1 are given in Table 2 and their deviations for regions 2 to 5 are in Table 3.

The estimated dispersion parameter under this model is φ̂ = 0.199, which is much
closer the value from the model in Figure 1. Of course it is still smaller than the respec-
tive fixed effects result, as the random effect now also explains some variability of the
responses.

Because the main interest is on estimating return levels and hence on quantiles of
the Gumbel distribution, the fitted mean and variance of each river was plugged into (7)
to obtain the estimated quantiles (8). This was done for the results of both considered
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Table 2: Coefficients and standard errors for the reference region 1.
Predictor β̂ s.e.
log(area) 0.830 0.067
noveg −0.007 0.017
dtm 0.009 0.002
rain 0.002 0.0002
forest 0.170 0.032
dtm.forest −0.060 0.015
gd 0.336 0.209

Table 3: Coefficients and standard errors for the deviations of each region from region 1.
Region 2 3 4 5
Predictor β̂ s.e. β̂ s.e. β̂ s.e. β̂ s.e.
log(area) −0.091 0.118 0.149 0.074 −0.135 0.076 0.126 0.072
noveg −0.122 0.036 −0.024 0.024 0.013 0.059 −0.035 0.026
dtm −0.012 0.002 −0.003 0.003 −0.007 0.005 0.050 0.007
rain −0.012 0.003 0.0002 0.001 −0.001 0.0004 −0.004 0.001
forest −0.338 0.050 −0.077 0.047 −0.148 0.073 0.599 0.096
dtm.forest 0.094 0.021 0.017 0.022 0.041 0.036 −0.361 0.052
gd −1.168 0.417 −0.755 0.256 −0.428 0.246 0.792 0.320

models. Then the obtained quantiles are compared to the reference quantiles based on
the ML estimates of the parameters of the Gumbel distribution. In Figure 2 the reference
return levels are plotted against the return levels based on the fitted mean and variance of
the GLMM.

To compare both models we consider respective mean residual sum of squares. The
residuals are defined as differences between reference return levels and return levels based
on the GLM and on the GLMM. Their values are 4524 for the GLM and 4252 for the
GLMM. This confirms the impression when comparing estimates of the dispersion pa-
rameter, namely that an additional random effect leads to a better result.

5 Results and Further Investigations

We present a method to predict flood water for rivers, even when no data on the discharge
of the river is available. It is based on modelling the annual maxima depending only on
some properties of the catchment of the river. This enables to predict flood water for any
river, as soon as some characteristics of its catchment are known. A GLMM is utilized to
model the mean of these annual maxima, mainly because allowing for random intercepts
enhances the goodness-of-fit and it also accounts for an appropriate correlation structure
between measurements within the same year.

As this method applied to data on rivers from Styria provides satisfactory prediction
of flood water, it has some limitations. First it can be only applied, if we assume that
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Figure 2: Comparison of the predicted return levels for a return period of 100 years based
on the ML estimates and the fitted means and dispersion parameter of the GLMM.

the extremes stem from a Gumbel distribution. Second, as with the classical univariate
approach this method is wasteful of data, thus it should be only applied if sufficiently
many data is available. Whether this is compensate by analyzing data of several subjects
together is an open question. Finally, confidence interval for return levels are not directly
available and method for calculating such confidence intervals have to be developed.

As the dispersion parameter plays a main role for predicting return levels, further
work has to be done to compare different estimates of this parameter. Second, prediction
intervals for the return levels are of interest, thus it should be investigated, how at least
approximative prediction intervals can be obtained. And finally, if we are not able to
assume, that the maxima follow a Gumbel distribution, how can this method be extended
onto the entire GEV family.
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