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Abstract: Semiparametric hazard function regression models are among the
well studied risk models in survival analysis. The Cox proportional hazards
model has been a popular choice in modelling data from epidemiological set-
tings. The Cox-Aalen model is one of the tools for handling the problem
of non-proportional effects in the Cox model. We show an application on
Piedmont cancer registry data. We initially fit standard Cox model and with
the help of the score process we detect the violation of the proportionality
assumption. Covariates and risk factors that, on the basis of clinical reason-
ing, best model baseline hazard are then moved into the additive part of the
Cox-Aalen model. Multiplicative effects results are consistent with those of
the Cox model whereas only the Cox-Aalen model fully represents the time-
varying effect of tumour size.

Zusammenfassung: Semiparametrische Regressionsmodelle gehoren zu den
gut untersuchten Modellen der Uberlebensanalyse. Das Cox Proportional
Hazards Modell wird hiufig zur Modellierung von epidemiologischen Daten
herangezogen. Die Verwendung des Cox-Aalen Modells ist eine Moglichkeit,
um das Problem von nicht-proportionalen Effekten im Cox Modell zu be-
handeln. Wir zeigen eine Anwendung dieser Modelle auf Daten des Krebs-
registers Piemont. Anfangs wird ein Cox Modell angepasst und mit Hilfe
des Score-Prozesses werden Verletzungen der Proportionalitdtsannahme ent-
deckt. Kovariable und Risikofaktoren, die aufgrund von klinischen Griinden
am besten den Baseline Hasard beschreiben, werden dann im additiven Teil
des Cox-Aalen Modells modelliert. Die Ergebnisse der multiplikativen Ef-
fekte entsprechen denen des Cox Modells, aber nur das Cox-Aalen Modell
kann den zeitabhingigen Effekt der Tumorgré8e vollstindig reprisentieren.
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1 Introduction

In survival analysis, regression models are employed to explain the occurrence of events
over a period of time taking various explanatory variables into consideration. The semi-
parametric Cox (1972) proportional regression model is the cornerstone of modern sur-
vival analysis and even if many alternatives exist in statistical literature, like the additive
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Aalen (1980, 1989) model, these are mostly overshadowed by it. In any case, the assump-
tion of constant effect over time, either additive or multiplicative, of categorical covariates
is not correct in many medical contexts.

Zahl (2003) showed how unlikely it might be to assume that high risk factors are mul-
tiplicative, at least in cancer survival analysis. For example, one covariate may initially
increase the hazard rate and it may later change, becoming even protective. Aggressive
cancer treatments using high-dose chemotherapy or bone marrow transplant operate in
this way. Alternatively, some covariates may initially decrease the hazard rate, but the
long-term effect might be adverse as that of treatment in malignant lymphoma.

Both Cox and Aalen models were extended in several directions. Many authors con-
sidered the Cox model with time-varying effects, whereas others tried to combine Cox’s
and Aalen’s model.

Multiplying the additive and multiplicative hazards models, Scheike and Zhang (2002)
studied the model which will be referred to as Cox-Aalen. For this model, some covari-
ate effects are believed to result in multiplicative effects whereas other effects are best
described as additive. This approach extends the traditional Cox model by allowing the
baseline intensity to depend on covariates through the additive Aalen model. It further
extends the additive Aalen model, providing a very flexible and useful class of models.
When some covariates are known or expected to have strongly time-varying effects, we
can include them in the additive part of this model, thus utilizing the higher flexibility
of the Aalen model. Other covariates can potentially be included in the multiplicative
part of the model. An alternative way of thinking of this model is to consider it as an
approximation to the general stratified hazard model suggested by Dabrowska (1997).

Goodness of fit of multiplicative effects must be investigated by appropriate tests,
usually based on asymptotical arguments (Scheike and Zhang, 2003).

In this paper we present an application of the Cox-Aalen model on a breast cancer
cohort identified by the population-based Piedmont (north-western Italian region) Cancer
Registry. In general, the aim of a population-based cancer registry is to collect information
on every case of cancer identified within a specified population over a given period of
time. The data are validated by a rigorous scheme of procedures, and a large amount
of resources are invested to ensure complete follow-up. Each cancer case is potentially
observed from diagnosis (entry time) until death occurs.

When the failure (i.e. death) is observed for each subject, we have complete data on
the failure (or survival) times. However, a certain time interval or follow-up period is
usually specified when updating survival and some cases may not have experienced the
event by that time. Besides, some patients could move out of the registry area and their
lifetimes would not be followed entirely. Therefore, data collected by a cancer registry
consist of two part: the complete survival times and the right-censored survival times.

Cancer registry data may not be appropriate for studies in cancer epidemiology and
health care quality assessment which require detailed information on exposures, comor-
bidity and health care utilization. In these situations, record-linkage procedures between
cancer registry data and other sources such as hospital discharge data and screening pro-
grams data have to be applied.

Breast cancer is the most common malignancy in women, accounting for about 25%
of all female cancers. Incidence is highest in northern Europe (age-standardised incidence
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rate 90-100 per 100 000) and declines from the north to the south of the continent. The
prognosis for breast cancer is relatively good, with 5-year relative survival exceeding 75%
in most countries of Western Europe (80% in Italy) (see Sant et al., 2003).

For this cancer site, covariates measured at diagnosis may eventually change their
influence on survival during the follow-up period as a consequence of treatments (such as
surgery, chemotherapy and radiation).

Moreover, given that the risk proportionality assumption is known to fail gradually
as the follow-up period increases, analyses that take into account time-varying effects
are required. We suggest the Cox-Aalen model, with its excess risk interpretation of
the additive part and standard relative risk interpretation of the multiplicative part, could
accomplish this task in a flexible way.

The outline of the paper is as follows. The second section gives a definition of the
Cox-Aalen survival model whereas the third shows its application to analyzing survival
of patients with breast cancer. The final section contains concluding remarks.

2 Cox-Aalen Survival Model

The multiplicative hazards models encompass the well-known proportional hazard model,
introduced by Cox in the context of survival data and later extended to the counting pro-
cess framework (Andersen and Gill, 1982).

The Cox regression model assumes that the intensity process (or hazard function) for
the i-th subject is

Xi(t) = Yi(t)Ao(t) exp(Xi(t)" ),

where Y;(t) is an at-risk indicator process, A\o(t) is the baseline intensity, X;(t) € R? is a
covariate vector, possibly changing over time, and 3 € RP are the regression coefficients.
Both Y; and X; are assumed to be left-continuous processes (predictable). If the covariates
are time-independent the model assumes that the hazard rates for different values of the
covariates are proportional. If we consider the special case where p = 1 and X; is time-
invariant, for example a disease indicator, the hazard rate (or relative risk) is the ratio

At, X1 +1)
At, X1)

which is seen not to depend on time because only the baseline intensity reflects this de-
pendency. This proportionality assumption should be scrutinized carefully, since covari-
ate effects often do not lead to constant relative risk (Houwelingen, 2000; Kvaloy and
Neef, 2004).

Statistical inference in the Cox model is primarily based on maximum partial likeli-
hood. Suppose that there are no ties between the event times and that censoring is non-
informative. Lett(;) < --- < f(y) be the ordered event times and let 1?; the risk set at time
t(j), that is the set of individuals who have not experienced the event (not failed) or been
censored by that time. Further let X (¢;)) denote the covariate vector for the individual
who fails at time #;). The partial likelihood (Cox, 1972) is thus expressed by

exp(X (t(;)" )
> icr, eXP(Xi(t(;))T8)

HR = :eXp(ﬁl)v

L(B) =

j=1

ey
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By maximizing (1) and then taking partial derivatives with respect to the 3’s, we get the
efficient score equations. The maximum likelihood estimates are the solutions to the p
nonlinear score equations Uy,(3) = 0, h = 1, ..., p. This can be done numerically using
iterative methods such as Newton-Raphson technique.

With the parameter  known (or replaced by the maximum partial likelihood esti-
mate), the cumulative baseline hazard function A(t) = f(f A(s)ds can be estimated by the
Breslow estimator, which takes the same form as the Nelson-Aalen estimator.

The model may be extended by allowing the regression coefficients to be time-varying
but this issue could be quite hard to settle, both theoretically and practically.

For the Cox model many goodness of fit tests were developed. Among others, we
mention the tests on parameters or those on the functional form of a covariate (a survey
of these tests can be found in Therneau and Grambsch, 2000). Besides these tests focused
on specific departures from the Cox model, there are also global tests; some of them are
based on the doubly cumulative hazard function (McKeague and Utikal, 1991) and others
are based on the martingale residual process (Marzec and Marzec, 1997).

Another approach to modelling survival data is to assume that covariates act additively
on the hazard. The covariates are assumed to impact additively upon a baseline hazard but
the effects are not forced to be constant. The impact is therefore allowed to vary freely
over time according to the underlying intensity

Ai(t) = Vi) Xi(H) a(t).

where «(t) is a nonparametric p-dimensional regression function that is constrained by
Ai(t) > 0. Since «(t) is allowed to change over time, the partial likelihood approach no
longer works for finding an estimator. The idea in this case is to find an estimator for the
integrated or cumulative regression function

A(t) = /Ot a(s)ds (2)

by a type of least squares method and smooth the estimator (for example, by kernel
smoothing) to obtain an estimator for «(t). Crude estimates of the regression functions
can be found by examining the slope of the fitted A(t)’s estimates.

Aalen (1980) proved that a reasonable estimator of A(t), usually referred as the ordi-
nary least square estimator (OLSE), is given by

A(t) =) X(tw) I,

t <t

where [}, is a column vector consisting of zeros except for a one in the place corresponding
to the subject who experiences the event at time ¢, and the matrix X (¢) is a generalized
inverse of Y (¢). Obviously, the estimator is only defined over the time interval where
Y (t) has full rank. In terms of asymptotic efficiency, the weighted-least-squares estimator
(WLSE) introduced by Huffer and McKeague (1991) is a better choice.

Goodness of fit procedures are mainly based on martingale residuals (Aalen, 1993).
These residuals can be defined up to the time ¢z when the matrix Y (¢) looses its full rank.
Let NV;(t) be a counting process for the i-th individual, indicating whether the event has
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happened. The process equals O up to the event time and 1 afterwards. In the case of
censoring, it always remains equal to 0. The definition of the martingale residual process
for the ¢-th individual may be written as:

Mres,i(t) = Nz (t) - A: (t) ) (3)

where Af(t) represents an estimator of the cumulative intensity. The value of (3) at the
final estimation time ¢y is denoted as martingale residual. The rationale for the above
definition is that one compares the observed counting process with the expected intensity.

Additive and proportional hazard models postulate a different relationship between
hazard and covariates and the subject matter rarely indicates which of the models are
preferable. Both techniques may often be used to complement each other and to provide
different summary measures. One advantage of the additive model is that time-varying
effects are easy to estimate and no smoothing parameter need to be chosen. Scheike and
Zhang (2002) suggest a model that combines the multiplicative and additive model, the
Cox-Aalen model, where the intensity is on the form

Ailt) = Yi(t)(Xi(t) a(t)) exp(Zi(t)" B) -

Some covariates effects thus work additively on the risk and other covariates are allowed
to have multiplicative effects. Approximate maximum likelihood estimators of the base-
line intensity functions and the relative risk parameters of the Cox model are derived by
solving the score equations. For a detailed description of the estimation procedure we
refer to Scheike and Zhang (2002). Here we briefly summarize their idea of finding an
estimator for (3, o(¢) and some goodness of fit procedures.

We start by making the observation that for known 3, we can use the Huffer and
McKeague (1991) estimator for the cumulative intensities defined in (2), which takes the
form

i = | Y8, 8)AN(s) @

where N (t) is a multivariate counting process and Y ~1(3,¢) is a weighted generalized
inverse of Y (3, t)

Y(3,t) = (Yi(t)exp (Z:1(t)" B) Xa(t), ..., Ya(t) exp (Z.(t)"B) Xn(t))T
YU B = (Y(B.TWBY(B.4) Y(B.)TW()

and Z;(t) € R? is a covariate vector. The weight matrix W (t) = diag[w,(5,1),.. .,
wy(B,t)] is diagonal with elements of the form w;(t) = Y;(t)exp(—Z;(t)T3)/hi(t),
where h;(t) are known functions not depending on (.

We now solve the joint score equations (derived from the log-likelihood function) for
(3 and «(t). This is done by solving the score equation for a(t) for given [ and then
substituting this solution into the score equation for 3. The score equation for a(t) is
given by

Y (8,0)"W(t) {dN(t) — Y (B,t)"dA(t)} = 0.

Solving for a given 3 and W (t) as above yields the Huffer-McKeague estimator. Inserting
this estimator of the cumulative intensity (4) into the score for 3, then [ is defined to be
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the solution to the equation:
U() = [ [26) = Z()"Y (5.9Y (3, 9N (5) = 0.

The initial estimates B and dfl(t) may be computed with simple weights that do not re-
quire the knowledge of «. A particularly simple choice of the weights to use as pri-
mary estimators is to set h;(t) = 1 for all ¢. The maximum likelihood weights have
hi(t) = XT(t)a(t) and they can be estimated by smoothing dA(t) to obtain &(t) and
setting h;(t) = X[ (t)a(t). This procedure is carried out iteratively to find final estimates
of 5 and «(t).

To evaluate the goodness of fit of the covariates included in the multiplicative part of
the Cox-Aalen model, Scheike and Zhang consider cumulative score processes as in Wei
(1984) and later in Lin et al. (1993). The authors base their inferential procedures on
asymptotic distributions of the observed score process U (B ,t), derived and approximated
by simulations. If the model is proportional for the j-th covariate, then the j-th component
of the score process should behave as under the null. A test statistics may be constructed
by considering:

Uj(th)

sup
te[0,7]

, j=1...,p.

To test if covariates that are included in the additive part of the model are significant,
departures of Aj(s) from the null are considered. Similarly to investigate if an additive
component has a time-varying effect, departures between Aj (s)/s and one estimate of the
constant effect under the null are analyzed.

3 Survival from Breast Cancer

We identified incident breast cancer cases, aged 40-79 and diagnosed from 1997 through
1999, from Piedmont Cancer Registry data within a high resolution study in co-operation
with the Breast Cancer Screening Program. We performed a deterministic record-linkage
between these patients and their respective hospital discharge records. Out of this initial
cohort, 1704 surgical cases (80%) were linked to the discharge abstract database. The
linkage provides a valuable source of information to analyze comorbidity, cancer treat-
ments and hospital characteristics. Among these cases, 285 died, 4 were lost to follow-up
and the remaining 1415 were still alive at 31st July 2003.

Risk factors for death were age at diagnosis (mean of 62 years), tumour size catego-
rized into six groups (< 2cm, > 2 to Scm, > 5cm, extension to chest wall/skin, in situ,
missing), (see International Union Against Cancer (UICC), 1997), regional lymph nodes
involvement (negative, positive or not assessed), presence of distant metastases and co-
morbidity score (Romano et al., 1993) categorized into three groups (0, 1 or > 1). Table
1 describes the patients characteristics at the date of cancer diagnosis (baseline).

We initially fitted a Cox regression model with all the observed risk factors included in
the linear predictor. According to the Grambsch and Therneau test (GT), proportionality
of covariate effects is not satisfied for tumour size and presence of metastases, resulting



1. Baldi et al.

83

Table 1: Patients baseline characteristics (metastases, tumour size, nodal status and co-

morbidity score).

N %
metastases presence 18 1.1
tumour size < 2cm 936 549
tumour size 2-5cm 426 25.0
tumour size > 5cm 53 3.1
tumour size extended 60 3.6
tumour size in situ 125 7.3
tumour size missing 104 6.1
node - negative 622 36.5
node - positive 536 31.5
nodes not assessed 546  32.0
comorb. score =0 1507 88.4
comorb. score = 1 107 6.3
comorb. score > 1 90 53

Table 2: Constant multiplicative effects, standard errors and proportionality test under the

standard Cox model and under the Cox-Aalen model(*).
6 B SE SE* GT Score*

metastases presence 1.03 0.36 - 0.005 -
tumour size 2-5cm 1.07 - 0.15 - 030 -
tumour size > 5cm 1.40 - 025 - 0.19 -
tumour size extended 1.78 - 021 - 003 -
tumour size in situ -0.84 - 047 - 032 -
tumour size missing 1.53 - 0.50 - 018 -
node - positive 0.83 0.85 0.17 0.17 0.69 0.64
nodes not assessed 0.65 0.68 0.19 0.19 095 0.66
comorb. score = 1 0.04 005 023 0.23 0.68 0.86
comorb. score > 1 1.34 134 0.16 0.17 0.20 0.18
age at diagnosis 0.03 - 0.01 - 048 -

Table 3: Additive effects under the standard Cox-Aalen model. Non significant effects
evaluated at the endpoint.

Test for non-significant effect Test for time invariant effect

metastases presence 0.09 0.10
tumour size 2-5cm < 0.001 0.06
tumour size > 5cm 0.05 0.03
tumour size extended 0.002 0.49
tumour size in situ < 0.001 0.68
tumour size missing 0.22 0.83
age at diagnosis 0.002 0.90

in p-values 0.03 and 0.005, respectively (Table 2). The overall p-value is 0.04. To in-
crease model flexibility and possibly avoid to force proportionality assumption for some
covariates, a Cox-Aalen model was introduced.
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We considered the model where tumour size, presence of metastases and age at diag-
nosis had an additive effect while nodal involvement and comorbidity score had a multi-
plicative effect. The choice on which factor to be modelled additively or multiplicatively
was based not only on residual analysis and goodness of fit evaluation but also on clinical
reasoning. In fact, even though Grambsch and Therneau test did not reject the hypoth-
esis of risk proportionality for age at diagnosis (p-value 0.48), this factor is supposed to
strongly influence baseline risk and therefore seemed natural to include it in the additive
part of the model.

Constant multiplicative effect estimates under the Cox model were in agreement with
those in the multiplicative part of the Cox-Aalen model (see Table 2). The score processes
to test risk proportionality for nodal status and comorbidity score are plotted in Figure 1
along with 50 random realizations under the null-hypothesis of constant multiplicative
effects. The score processes are clearly inside the expected values as testified by the
correspondent score test p-values reported in Table 2.

The results of the test for non-significant effects, appropriate when the effects give
monotone cumulative and conducted by testing if the cumulative effect is O at the end-
point, are shown in Table 3. Almost all additive terms are significant or borderline signif-
icant (as metastases presence).

When plotted against time, the slope of A(t) provides information about the influence
of the covariate. In particular, if «(¢) is constant (or time-invariant), then the plot should
approximate a straight line. Table 3 reports the p-values of the test based on this rationale.

Introducing an additive term via the Aalen model suggests that tumour size has a
time-varying effect (see Table 3). During the first 18 months after diagnosis its effect
is not significant, later it becomes an important predictor for death. Figure 2 illustrates
the cumulative additive effect of tumour size (2-5cm and > 5cm) with 95% pointwise
confidence bands.

4 Discussion

The assumption that the relative risks are constant over time may not hold in practice,
at least in cancer survival. There are various way of circumventing this assumption, but
most of them are somewhat ad hoc.

If the proportional hazard assumption is critical for a categorical covariate, the most
commonly applied approach is to apply the stratified Cox model. The baseline function
is thus replaced with as many baseline functions as the number of covariate-strata. In
this way, various non proportional developments of the relative risk with time may be
reflected. However, when dealing with critical continuous covariates, this method is not
really satisfactory since an arbitrary categorization is required.

The phenomenon of time-dependent effect of a continuous covariate can actually, to
a certain degree, be modelled by the use of time-dependent covariates. If we suppose
that relative risks change at some specific points in time, we can fit a Cox model with
piecewise constant time-varying effects, getting different risk estimates for each critical
interval. The drawback is that the cut points will not be known a priori but need to be
chosen in an ad hoc manner.
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Figure 1: Score test for multiplicative effect for regional lymph nodes involvement and
comorbidity score in Cox-Aalen model and 50 randomly chosen processes (grey lines)

under the null of a constant multiplicative effect.



86 Austrian Journal of Statistics, Vol. 35 (2006), No. 1, 77-88

TUMOUR SIZE 2-5 cm TUMOUR SIZE =5 cm
= =
= 2 .
g 2] E
a o 2 &
L= =1
= m i
oy - o oo
[ =1 o
£ g 2
: : -
= = = -
= =1
E E w
g s g8
g o L
T T T T T T T T
] 20 40 G0 u] 20 40 =1
Titme Time

Figure 2: Tumor size (2nd and 3rd vs. 1st category) cumulative additive effect of additive-
multiplicative model.

Our approach is to model in a more flexible way via the Cox-Aalen model, moving
all the non proportional effects to the additive part of the model. Instead of having a
simple baseline intensity, this extended model uses Aalen’s model as its covariate depen-
dent baseline. Another important advantage is that even though covariates are allowed a
non-parametric effect, the hassle and difficulty of finding smoothing parameters are not
needed.

In the analysis of survival from breast cancer we carried out, not only covariates for
which a violation of the proportionality assumption was detected, but also risk factors
that most influence a baseline risk were included in Aalen’s part of the model. The re-
sulting Cox-Aalen model had an additive part consisting of a baseline, age at diagnosis
and tumour size. The proportional part of the model contained regional lymph nodes in-
volvement and comorbidity score. Even though proportionality in age at diagnosis effect
was satisfied, this factor is supposed to strongly influence baseline risk and therefore it
seemed natural to include it in the additive part of the model. Multiplicative effects were
consistent with those of Cox model whereas tumour size showed a time-varying effect.
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