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Abstract: For square contingency tables with ordered categories, Agresti
(1984, 2002) considered the marginal cumulative logistic (ML) model, which
is an extension of the marginal homogeneity (MH) model. The ML model de-
pends on the probabilities on the main diagonal of the table. This paper (1)
proposes the conditional marginal cumulative logistic (CML) model which
does not depend on the probabilities on the main diagonal, and (2) decom-
poses the MH model into the ML (CML) model and the model which indi-
cates the equality of row and column marginal means. Examples are given.

Zusammenfassung: Für quadratische Kontingenztafeln mit geordneten Kat-
egorien betrachtete Agresti (1984, 2002) ein marginales kumulatives logistis-
ches Modell (ML), welches eine Erweiterung des marginalen Homogenitäts-
modells (MH) ist. Das ML Modell hängt von den Wahrscheinlichkeiten auf
der Hauptdiagonalen der Tafel ab. In diesem Aufsatz wird (1) das kondi-
tionale marginale kumulative logistische (CML) Modell empfohlen, das nicht
von den Wahrscheinlichkeiten auf der Hauptdiagonalen abhängt, und (2) das
MH Modell zerlegt in das ML (CML) Modell und ein Modell, welches die
Gleichheit von marginalen Zeilen- und Spaltenmittel anzeigt. Beispiele wer-
den angeführt.

Keywords: Decomposition, Marginal Cumulative Logistic Model, Marginal
Homogeneity, Marginal Mean Equivalence, Square Contingency Table.

1 Introduction

For the R × R square contingency table with ordered categories, let pij denote the prob-
ability that an observation will fall in the cell in row i, i = 1, . . . , R, and column j,
j = 1, . . . , R, and let X and Y denote the row and column variables, respectively. First,
consider the marginal homogeneity (MH) model defined by

Pr(X = i) = Pr(Y = i) for i = 1, . . . , R ,

that is
pi· = p·i for i = 1, . . . , R , (1)

where

pi· =
R∑

k=1

pik , p·i =
R∑

k=1

pki .
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This model indicates that the row marginal distribution is the same as the column marginal
distribution. For this model see also Stuart (1955), Bishop et al. (1975, p. 294), Agresti
(1984, p. 207), and Tomizawa (1991, 1993b, 1998).

Let FX
i and F Y

i denote the marginal cumulative probabilities of X and Y , respectively.
These are FX

i = Pr(X ≤ i) =
∑i

k=1 pk· and F Y
i = Pr(Y ≤ i) =

∑i
k=1 p·k, for

i = 1, . . . , R− 1. Then the MH model may also be expressed as

FX
i = F Y

i for i = 1, . . . , R− 1 .

Let LX
i and LY

i denote the marginal cumulative logit of X and Y , respectively. These
are given as

LX
i = logit [Pr(X ≤ i)] = log

[
Pr(X ≤ i)

1− Pr(X ≤ i)

]
,

and

LY
i = logit [Pr(Y ≤ i)] = log

[
Pr(Y ≤ i)

1− Pr(Y ≤ i)

]
,

for i = 1, . . . , R− 1. Then the MH model may be further expressed as

LX
i = LY

i for i = 1, . . . , R− 1 .

As an extension of the MH model, Agresti (1984, p. 205), Agresti (2002, p. 420)
considered the marginal cumulative logistic (ML) model defined by

LX
i = LY

i + ∆ for i = 1, . . . , R− 1 . (2)

This model indicates that one marginal distribution is a location shift of the other marginal
distribution on a logistic scale. So, this model states that the odds that X is i or below
instead of i+1 or above, is exp(∆) times higher than the odds that Y is i or below instead
of i + 1 or above, for i = 1, . . . , R− 1. If ∆ > 0, X rather than Y tends to be i or below
instead of i + 1 or above, for i = 1, . . . , R− 1. The ML model may also be expressed as

FX
i =

exp(θi)

1 + exp(θi)
and F Y

i =
exp(θi −∆)

1 + exp(θi −∆)
,

for i = 1, . . . , R − 1. A special case of this model obtained by putting ∆ = 0 is the MH
model. Therefore, the MH model implies the ML model, but the converse does not hold.
Hence, we are now interested in what restrictions need to be imposed on the ML model
in order that the MH model holds.

The MH model defined by (1) essentially does not depend on the probabilities {pii}
on the main diagonal of the table. Thus, the MH model may also be expressed as

Pr(X = i|X 6= Y ) = Pr(Y = i|X 6= Y ) for i = 1, . . . , R ,

that is
pc

i· = pc
·i for i = 1, . . . , R , (3)
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where

pc
i· =

pi· − pii

δ
= Pr(X = i|X 6= Y ) , δ =

R∑
s=1

R∑
t=1
t 6=s

pst = Pr(X 6= Y ) ,

pc
·i =

p·i − pii

δ
= Pr(Y = i|X 6= Y ) .

Let F
X(c)
i and F

Y (c)
i denote the conditional marginal cumulative probabilities of X and Y

given that X 6= Y , i.e.

F
X(c)
i = Pr(X ≤ i|X 6= Y ) =

i∑

k=1

pc
k·

F
Y (c)
i = Pr(Y ≤ i|X 6= Y ) =

i∑

k=1

pc
·k ,

for i = 1, . . . , R− 1. Then the MH model may be further expressed as F
X(c)
i = F

Y (c)
i .

We are also interested in proposing another ML model defined by (2) with {FX(c)
i }

and {F Y (c)
i } instead of {FX

i } and {F Y
i }. In addition, we are interested in decomposing

the MH model using such another ML model.
Consider the data in Tables 1 to 3. Table 1 is taken from Stuart (1955) and contains

data on distance visions. These data have been analyzed by many statisticians, including
Stuart (1955), Bishop et al. (1975, p. 284), McCullagh (1978), Goodman (1979), Agresti
(1984, p. 215), Tomizawa (1993a), and Miyamoto et al. (2004).

Table 1: Unaided distance vision of 7477 women aged 30-39 employed in Royal Ord-
nance factories from 1943 to 1946. The upper and lower parenthesized values are the
MLEs of expected frequencies under the ML and CML models, respectively.

Left eye grade
Right eye grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976
(1519.45) (269.57) (125.40) (65.37)
(1520.00) (264.65) (123.69) (65.92)

Second (2) 234 1512 432 78 2256
(230.86) (1511.98) (431.09) (76.26)
(235.31) (1512.00) (433.09) (78.30)

Third (3) 117 362 1772 205 2456
(115.67) (362.76) (1772.00) (200.83)
(117.34) (361.02) (1772.00) (205.24)

Worst (4) 36 82 179 492 789
(36.37) (83.99) (182.96) (492.44)
(36.05) (81.66) (178.72) (492.00)

Total 1907 2222 2507 841 7477
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Table 2: Merino ewes according to number of lambs born in consecutive years. The
parenthesized values are the MLEs of expected frequencies under the ME model.

Number of Lambs 1952
Number of

Lambs 1953 0 1 2 Total
0 58 52 1 111

(58.00) (50.83) (0.96)
1 26 58 3 87

(26.61) (58.00) (2.93)
2 8 12 9 29

(8.39) (12.28) (9.00)
Total 92 122 13 227

Table 3: The results from two Danish polls on the question: Do you think Denmark should
join the Common Market? The upper and lower parenthesized values are the MLEs of
expected frequencies under the ML and CML models, respectively.

Poll II (October 1971)
Poll I

(August 1971) Yes (1) Undecided (2) No (3) Total
Yes (1) 176 40 33 249

(176.64) (36.27) (33.52)
(176.00) (35.21) (32.91)

Undecided (2) 21 43 33 97
(23.56) (43.11) (37.53)
(25.19) (43.00) (38.06)

No (3) 21 32 94 147
(20.60) (28.43) (93.32)
(21.10) (27.53) (94.00)

Total 218 115 160 493

Table 2 is taken from Tallis (1962) and constructed from the cross-classified data of
Merino ewes according to the numbers of lambs born in consecutive years, 1952 and 1953
(also see Bishop et al., 1975, p. 288).

Table 3 is taken from Andersen (1980, p. 328) and includes the results of two con-
secutive opinion polls held in August and October 1971, in connection with the Danish
referendum on whether to join the Common Market or not.

For analyzing the data of square tables with ordered categories like Tables 1, 2 and
3, the various models of symmetry or asymmetry, like e.g., symmetry, quasi-symmetry,
MH, and conditional symmetry models are applied (see, e.g., Tomizawa, 1993a). These
models do not depend on the main diagonal cell probabilities {pii}; namely, these indicate
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the structure of symmetry or asymmetry on condition that an observation will fall in one
of off-diagonal cells of the table. So, many statisticians may be interested in the structure
of symmetry or asymmetry for off-diagonal cell probabilities {pij}, i 6= j. We are also
interested in another ML model defined by (2) with {FX(c)

i } and {F Y (c)
i }, which indicates

the structure of marginal inhomogeneity on condition that an observation will fall in one
of off-diagonal cells of the table.

In addition, the readers may be interested in, for example, (1) for the data in Table
1, seeing how the right eye of a woman is symmetric or asymmetric to her left eye on
condition that the her right eye grade is different from her left eye grade, and (2) for the
data in Table 3, seeing, when the opinion in poll II of an individual changed from in poll
I, how the individual changed the attitude. So, we are again interested in models which
indicate the structure of marginal inhomogeneity on condition that an observation will fall
in one of off-diagonal cells of the table.

When the MH model does not hold for the data, many statisticians may be interested
in applying various models of symmetry or asymmetry instead of the MH model, and
in selecting a best-fitting model by using, e.g., the AIC-criterion (see Sakamoto et al.,
1986). In addition, we are then interested in the reason why the MH model does not hold.
Although it would be impossible to see the reason by the AIC-criterion, the decomposition
of the MH model into some models may be useful to see the reason, according to which
model of decomposed models fits well and which model of them fits poorly (see Section
3 for details).

Generally, consider a decomposition of model, say, M1, such that model M1 holds if
and only if both models M2 and M3 hold. When models M1 and M2 fit the data poorly
and model M3 fits the data well, we can then understand that the poor fit of model M1 is
caused by the lack of structure of model M2 rather than the structure of model M3. Thus,
the decomposition of model M1 (especially, into two models) would be useful to see the
reason for the poor fit of model M1.

Denote the likelihood ratio chi-squared statistic for testing the goodness-of-fit of model
M by G2(M). For testing if model M1 holds assuming that model M2 holds, the like-
lihood ratio statistic is given as G2(M1|M2) = G2(M1) − G2(M2) ≥ 0. Then the de-
composition of model M1 into models M2 and M3 also has the advantages that (1) when
model M2 holds, the conditional statistic G2(M1|M2) is more powerful than the uncon-
ditional statistic G2(M1) (see, e.g., Agresti, 1984, p. 82), and (2) from the decomposition
of model M1, it is possible to see what the structure that model M1 holds assuming that
model M2 holds indicates, i.e., that indicates the structure that model M3 holds.

The purpose of this paper is (1) to propose another ML model based on {FX(c)
i } and

{F Y (c)
i }, and (2) to decompose the MH model using the two kinds of ML models. The

decompositions may be useful for seeing the reason for the poor fit when the MH model
fits the data poorly.
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2 Decompositions of the Marginal Homogeneity Model
We shall consider two kinds of decompositions of the MH model.

2.1 A decomposition of the MH model using the ML model
Consider a model defined as

R∑
i=1

ipi· =
R∑

i=1

ip·i , (4)

i.e., E(X) = E(Y ). This indicates that the mean of the row variable X equals the mean
of the column variable Y . Note that the MH model implies model (4).

Consider a specified monotonic function g(k) satisfying g(1) ≤ g(2) ≤ · · · ≤ g(R) or
g(1) ≥ g(2) ≥ · · · ≥ g(R), where at least one strict inequality holds. Using the function
g(k), model (4) is generalized as

R∑
i=1

g(i)pi· =
R∑

i=1

g(i)p·i , (5)

i.e., E(g(X)) = E(g(Y )). We shall refer to (5) as the marginal mean equivalence (ME)
model. This indicates that the mean of g(X) is equal to the mean of g(Y ).

The {g(k)} may be considered as the ordered scores {uk} assigned to both row and
column categories if it is possible to assign the scores; namely, g(k) = uk satisfying
u1 ≤ u2 ≤ · · · ≤ uR or u1 ≥ u2 ≥ · · · ≥ uR. Particular, when the scores are equal-
interval; that is, when u2 − u1 = u3 − u2 = · · · = uR − uR−1, then the ME model with
g(k) = uk is equivalent to the model (4), i.e, the ME model with g(k) = k. Therefore,
model (5) applied on examples in Section 3 may also be considered as the ME model with
g(k) = k. (We note that when the scores are not equal-interval, it seems difficult to obtain
an intuitive interpretation. However, in many cases, the equal-interval scores seems to be
used.) We now obtain the following theorem.

Theorem 1: The MH model holds if and only if both the ML and ME models hold.
Proof. If the MH model holds, then both the ML and ME models hold. Therefore, we
assume that both the ML and ME models hold, and then we show that the MH model
holds. We have

E(g(X)) =
R∑

k=1

g(k)pk· = g(1) +
R∑

k=2

(
dk

R∑

i=k

pi·

)
= g(1) +

R∑

k=2

dk

(
1− FX

k−1

)

= g(R)−
R∑

k=2

dkF
X
k−1 ,

where
dk = g(k)− g(k − 1) .

Similarly, we have

E(g(Y )) = g(R)−
R∑

k=2

dkF
Y
k−1 .



N. Miyamoto et al. 367

This yields

E(g(Y ))− E(g(X)) =
R∑

k=2

dk

(
FX

k−1 − F Y
k−1

)
. (6)

Since the ML and ME models hold, we obtain

R∑

k=2

dk

(
exp(θk−1)

1 + exp(θk−1)
− exp(θk−1 −∆)

1 + exp(θk−1 −∆)

)
= 0 .

Thus

(1− exp(−∆))
R∑

k=2

dk
exp(θk−1)

(1 + exp(θk−1))(1 + exp(θk−1 −∆))
= 0 .

Then
R∑

k=2

dk
exp(θk−1)

(1 + exp(θk−1))(1 + exp(θk−1 −∆))
6= 0

because dk ≥ 0 or dk ≤ 0 for all k = 2, . . . , R, with at least one of the dks being not equal
to zero. Therefore we obtain ∆ = 0, i.e., the MH model holds. The proof is completed.

2.2 A decomposition of the MH model using the CML model
Consider a model defined by

L
X(c)
i = L

Y (c)
i + ∆∗ for i = 1, . . . , R− 1 ,

where

L
X(c)
i = logit [Pr(X ≤ i|X 6= Y )] = log

[
Pr(X ≤ i|X 6= Y )

1− Pr(X ≤ i|X 6= Y )

]
,

L
Y (c)
i = logit [Pr(Y ≤ i|X 6= Y )] = log

[
Pr(Y ≤ i|X 6= Y )

1− Pr(Y ≤ i|X 6= Y )

]
.

We shall refer to this model as the conditional marginal cumulative logistic (CML) model.
The CML model indicates that given that an observation falls in one of the off-diagonal
cells of the table, one conditional marginal distribution is a location shift of the other
conditional marginal distribution on a logistic scale. Therefore, this model states that
given that an observation falls in one off-diagonal cell, the odds that X is i or below
instead of i + 1 or above, is exp(∆∗) times higher than the odds that Y is i or below
instead of i + 1 or above, for i = 1, . . . , R − 1. If ∆∗ > 0, X rather than Y tends to be i
or below instead of i + 1 or above. We now obtain the following theorem.

Theorem 2: The MH model holds if and only if both the CML and ME models hold.

We omit the proof because it can be obtained in a similar way as the proof of Theorem 1.
Let nij denote the observed frequency in the ith row and jth column of the R × R

table with n =
∑∑

nij , and let mij denote the corresponding expected frequency. We
assume that {nij} have a multinomial distribution. The maximum likelihood estimates
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(MLEs) of the expected frequencies under each model can be easily obtained using a
Newton-Raphson method to solve the likelihood equation (see the Appendix, e.g., for the
CML model). The numbers of degrees of freedom (df) for testing the goodness-of-fit of
the MH, ML (CML), and ME models are R− 1, R− 2, and 1, respectively.

3 Examples
We analyze the data in Tables 1 to 3 using the decompositions of the MH model. Table 4
presents the values of the likelihood ratio statistic G2 for the models applied to these data.

Table 4: Likelihood ratio values G2 for models applied to the data in Tables 1, 2 and 3.

Table 1 Table 2 Table 3
Models df G2 df G2 df G2

MH 3 11.99∗ 2 18.65∗ 2 8.49∗

ML 2 0.39 1 18.55∗ 1 1.69
CML 2 0.03 1 18.59∗ 1 2.76
ME 1 11.98∗ 1 0.07 1 5.69∗

Note, g(k) for the ME model are the equal-interval scores.
∗ means significant at the 0.05 level.

3.1 Unaided vision data
When the MH model is applied to the data in Table 1, this model fits poorly, yield-
ing G2(MH) = 11.99 with 3 df. However, the ML (CML) model, which is one of
the decomposed models for the MH model, fits the data well where G2(ML) = 0.39
and G2(CML) = 0.03 with 2 df. On the other hand, the ME model with g(k) = k,
k = 1, 2, 3, 4, which is the other of the decomposed models, fits these data very poorly,
yielding G2(ME) = 11.98 with 1 df.

Since the ML (CML) model fits very well, we consider the hypothesis that the MH
model holds under the assumption that the ML (CML) model holds, i.e., the hypothesis
that ∆ = 0 (∆∗ = 0) under the assumption, which is also equivalent to the hypothesis that
the ME model holds, i.e., the mean of right eye grade is equal to the mean of left eye grade
(i.e., E(X) = E(Y )), under the same assumption, by Theorem 1 (or Theorem 2). The
difference between the G2 values for the MH and ML (CML) models is G2(MH|ML) =
G2(MH) − G2(ML) = 11.60 (G2(MH|CML) = G2(MH) − G2(CML) = 11.96)
with 3− 2 = 1 df, and thus this hypothesis is rejected at the 0.05 significance level. This
shows very strong evidence of ∆ 6= 0 (∆∗ 6= 0), i.e., exp(∆) 6= 1 (exp(∆∗) 6= 1) in
the ML (CML) model, i.e., very strong evidence of E(X) 6= E(Y ) under the ML (CML)
model. Therefore the ML (CML) model is preferable to the MH model for these data.

Under the ML model we get exp(∆̂) = 1.06, or ∆̂ = 0.05 with a standard error of
0.02. Note that exp(∆) is estimated to be greater than 1 (from the test described above).
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Thus, under the ML model the odds that a woman’s right eye grade is i or below instead
of i + 1 or above, for i = 1, 2, 3, is estimated to be 1.06 times higher than the odds that
her left eye grade is i or below instead of i + 1 or above. Since exp(∆̂) > 1, a woman’s
right eye grade rather than her left eye grade tends to be i or below instead of i + 1 or
above. Thus, a woman’s right eye tends to be better than her left eye.

Under the CML model the MLE is exp(∆̂∗) = 1.21, or ∆̂∗ = 0.19 with a standard
error of 0.06. Thus, from the CML model follows that given that a woman’s right eye
grade is different from her left eye grade, the odds that the woman’s right eye grade is i or
below instead of i + 1 or above is estimated to be 1.21 times higher than the odds that her
left eye grade is i or below instead of i + 1 or above. Since exp(∆̂∗) > 1, the woman’s
right eye grade rather than her left eye grade tends to be i or below instead of i + 1 or
above. Therefore, when a woman’s right eye grade is different from her left eye grade,
her right eye tends to be better than her left eye.

3.2 Ewe Data
Consider the data in Table 2. When the MH model is applied to these data, the model
fits poorly and gives G2(MH) = 18.65 with 2 df. In addition, the ML (CML) model fits
also poorly and yield G2(ML) = 18.55 and G2(CML) = 18.59 with 1 df. However,
the ME model with g(k) = k, k = 0, 1, 2, fits very well and gives G2(ME) = 0.07 with
1 df. Therefore, we consider the hypothesis that the MH model holds assuming that the
ME model also holds. Because of G2(MH|ME) = G2(MH)−G2(ME) = 18.58 with
2 − 1 = 1 df, this hypothesis is rejected at the 0.05 significance level, and hence the ME
model is preferable to the MH model.

The ME model would provide that the mean for the number of lambs born to a ewe
in 1953 is equal to the mean for the number in 1952. However, the distribution for the
number of lambs in 1953 is different from the distribution for the number in 1952, because
of the poor fit of the MH model. Note that under the ME model, the mean for the number
of lambs born to a ewe in 1953 (in 1952) is estimated to be 0.65.

3.3 Danish Opinion Polls Data
From Table 4 we see that the MH model fits the data in Table 3 poorly. However, the ML
(CML) model fits well and yields G2(ML) = 1.69 and G2(CML) = 2.76 with 1 df. The
ME model with g(k) = k, k = 1, 2, 3, fits poorly (see Table 4).

Consider the hypothesis that the MH model holds under the assumption that the ML
(CML) model holds. Thus, we test the hypothesis that ∆ = 0 (∆∗ = 0) under the assump-
tion. Because G2(MH|ML) = G2(MH) − G2(ML) = 6.80 and G2(MH|CML) =
G2(MH)−G2(CML) = 5.73 with 1 df, we reject the hypothesis at the 0.05 level. This
shows strong evidence of ∆ 6= 0 (∆∗ 6= 0) in the ML (CML) model, i.e., evidence of
E(X) 6= E(Y ). Therefore, the ML (CML) model is preferable to the MH model here.

Under the ML model we get exp(∆̂) = 1.23, i.e., ∆̂ = 0.21 with a standard error
of 0.08. Thus, the ML model provides that (1) the odds that the opinion of an individual
is ’yes’ instead of ’not yes (i.e., undecided or no)’ is estimated to be 1.23 times higher
in poll I than in poll II, and (2) the odds that the opinion of the individual is ’not no’
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instead of ’no’ is 1.23 times higher in poll I than in poll II. The interpretation (2) may
also be described as the odds that the opinion of the individual is ’no’ instead of ’not no’
is estimated to be 1.23 times higher in poll II than in poll I. Therefore, (i) the tendency
that the opinion of an individual is ’yes’ is stronger in poll I than in poll II, and (ii) the
tendency that it is ’no’ is stronger in poll II than in poll I.

Next, under the CML model we get exp(∆̂∗) = 1.76, or ∆̂∗ = 0.56 with a standard
error of 0.24. Thus, the CML model provides that (1) under the condition that the opinion
in poll II of an individual changed from in poll I, the odds that the opinion is ’yes’ instead
of ’not yes’ is estimated to be 1.76 times higher in poll I than in poll II, and (2) on the
same condition, the odds that the opinion of the individual is ’no’ instead of ’not no’ is
estimated to be 1.76 times higher in poll II than in poll I. Therefore, on condition that the
opinion in poll II of an individual changed from in poll I, (i) the tendency that the opinion
of the individual is ’yes’ is stronger in poll I than in poll II, and (ii) the tendency that it is
’no’ is stronger in poll II than in poll I.

4 Concluding Remarks

The decompositions of the MH model is useful in order to see the reason for its poor fit.
Indeed, for the data in Table 1, the poor fit of the MH model is caused by the poor fit

of the ME model rather than the ML (or CML) model, i.e., by the reason that the mean
of a woman’s right eye grade is different from the mean of the woman’s left eye grade.
Note that under the ML model, which fits these data very well, the MLE of the mean of
the woman’s right eye grade is 2.28 and that of the woman’s left eye grade is 2.30. Under
the CML model, which also fits very well, the MLE of the mean of the woman’s right eye
grade is 2.27 and that of the woman’s left eye grade is 2.31. Conversely, for the data in
Table 2, the poor fit of the MH model is caused by the poor fit of the ML (or CML) model
rather than the ME model. Also, for the data in Table 3, the poor fit of the MH model is
caused by the poor fit of the ME model rather than the ML or CML model.

The MH model as the CML and ME model they all do not depend on the probabilities
{pii} on the main diagonal of the table, but the ML model depends on them. Notice that
the estimated expected frequencies on the main diagonal cells under the ML model are
different from the observed frequencies on the main diagonal (see Tables 1 and 3). Thus,
if the MH model does not hold and if we want to see the reason, especially, the reason why
the equalities of the conditional row cumulative probabilities {FX(c)

i } and the conditional
column cumulative probabilities {F Y (c)

i } do not hold, the analyst may be interested in
inferring the structure of off-diagonal probabilities {pij}, i 6= j and not the main diagonal
probabilities {pii}. In this case, the decomposition of the MH model into the CML and
ME models may be preferable to that into the ML and ME models when the analyst wants
to see the reason why the equalities of {FX(c)

i } and {F Y (c)
i }, or the equalities of {pc

i·} and
{pc
·i}, do not hold.
However, the MH model indicates the equalities of the row cumulative probabilities

{FX
i } and the column cumulative probabilities {F Y

i }, which include the probabilities
{pii} on the main diagonal. Therefore, if the MH model does not hold and if we want to
see the reason why the equalities of {FX

i } and {F Y
i } do not hold, the analyst may also be
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interested in inferring the structure of {FX
i } and {F Y

i }. Then, the decomposition of the
MH model into the ML and ME models may be preferable to that into the CML and ME
models when the analyst wants to see the reason why the equalities of {FX

i } and {F Y
i },

or the equalities of {pi·} and {p·i}, do not hold, because each of the ML and ME models
can be expressed as the function of {FX

i } and {F Y
i }.

For the data in Table 3, the readers may be interested in seeing, given the opinion in
poll II of an individual changed from in poll I, how the individual changed its attitude.
Then the CML model rather than the ML model is useful.

The decompositions of the MH model described here should be considered for ordi-
nal categorical data, because each of the decomposed models is not invariant under the
same arbitrary permutations of the row and column categories (although the MH model
is invariant under them).

The reader may also be interested in whether it is possible to decompose the test
statistic for the MH model. For the decompositions of the MH model described here, it
is not guaranteed that the test statistic for the MH model is asymptotically equivalent to
the sum of the test statistics for the decomposed models, although the number of df for
the MH model is equal to the sum of those for the decomposed models. However, the
decomposition of the MH model would be useful for seeing the reason for the poor fit
when the MH model fits the data poorly.
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Appendix
We consider the MLEs of the expected frequencies {mij} under the CML model. Those
under the MH, ML, and ME models can be obtained in the similar manner, although those
are omitted here.

To obtain these MLEs under the CML model, we must maximize the Lagrangian

L =
R∑

i=1

R∑
j=1

nij log pij − µ

(
R∑

i=1

R∑
j=1

pij − 1

)

−
R−1∑
i=1

λi

(
F

X(c)
i

(
1− F

Y (c)
i

)
− exp(∆∗)

(
1− F

X(c)
i

)
F

Y (c)
i

)

with respect to {pij}, µ, {λi}, and ∆∗. Setting the partial derivatives of L equal to zero,
we obtain the equations

mij = nij − pijδ
−1

R−1∑
u=1

I(i 6=j)

×
[
I(u≥i)I(u≥j)λu

{(
1− F Y (c)

u

)− exp(∆∗)
(
1− FX(c)

u

)}

+I(u<i)I(u≥j)λu

{− exp(∆∗)
(
F Y (c)

u +
(
1− FX(c)

u

))}

+I(u≥i)I(u<j)λu{
(
1− F Y (c)

u

)
+ FX(c)

u }
+I(u<i)I(u<j)λu{FX(c)

u − exp(∆∗)F Y (c)
u }

]
, for i = 1, . . . , R ; j = 1, . . . , R ,

as well as
R−1∑
i=1

λi

(
1− F

X(c)
i

)
F

Y (c)
i = 0 ,

and

F
X(c)
i

(
1− F

Y (c)
i

)
= exp(∆∗)

(
1− F

X(c)
i

)
F

Y (c)
i , for i = 1, . . . , R− 1 ,
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where mij = npij and I(·) is the indicator function. Using the Newton-Raphson method,
we can solve the equations with respect to {pij}, {λi} and ∆∗. Therefore, we can obtain
the MLEs of {mij} and ∆∗ under the CML model.
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