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Abstract: Queueing systems with feedback are well suited for the descrip-
tion of message transmission and manufacturing processes where a repeated
service is required. In the present paper we investigate a rather general sin-
gle server queue with a Markovian Arrival Process (MAP), Phase-type (PH)
service-time distribution, a finite buffer and feedback which operates in a ran-
dom environment. A finite state Markovian random environment affects the
parameters of the input and service processes and the feedback probability.
The stationary distribution of the queue and of the sojourn times as well as
the loss probability are calculated. Moreover, Little’s law is derived.
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1 Introduction

The traditional assumption in queueing is the following: after the server completes the ser-
vice of a customer, this customer leaves the system forever and does not affect the further
operation of the system. However, in some real systems a quality control is implemented
for the service after the service completion and with some probability the customer may
return to get additional service. Such a situation takes place,for instance, when a message
is transmitted along a noisy wireless channel. These models with a return of a customer to
get additional service (feedback queueing models) deserve special consideration. In this
respect, we can refer to Takacs’ pioneering work (Takacs, 1963).

Compared to the existing literature two main contributions are made in the present
paper. At first, we take into account the correlated nature of arrival streams in modern
systems, e.g. message flows in telecommunication networks. Therefore, we apply so
called Markovian Arrival Processes (MAP) as input of the system. They are used instead
of a Poisson process which is one of the most popular input streams in the literature.
Moreover, the statistical analysis of measurements in the modern telecommunication net-
works, for instance, has shown that the stationary Poisson process does not fit well to
experimental data.

The second and more important contribution concerns a situation where the parame-
ters of the input and service processes and the feedback probability to get the additional
service depend on the current state of some external random process called a random en-
vironment. In addition, we deal with a finite buffer while previous studies have mainly
considered feedback models with infinite buffer.
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2 Mathematical Model

We consider a single server system with a finite buffer of capacityN − 1, N ≥ 1. The
behavior of the system depends on the state of a stochastic process, i.e. the random
environment,ξt,t ≥ 0. It is assumed to be an irreducible continuous-time Markov chain
with the state space{1, . . . , M}, M ≥ 2 and the infinitesimal generatorQ.

The input flow of the system is determined by the following modification of the well-
known BMAP (see, e.g., Lucantoni, 1991; Chakravarthy, 2001). In this input flow, the
inter-arrival times of customers are directed by an irreducible continuous time processνt,
t ≥ 0 (directing process) with the state space{0, 1, . . . , W}. Given a fixed statem of the
random environment, this process behaves as follows. The sojourn time of the processνt

in stateν is exponentially distributed with parameterλ
(m)
ν , λ

(m)
ν > 0, ν = 0,W . After

this sojourn time has expired, the processνt either jumps to the stater, r = 0,W , ν 6= r,
without generating an arrival with probabilityp(m)

0 (ν, r), or the processνt jumps to the
stater, r = 0,W generating a batch arrival of sizek ≥ 1 with probability p

(m)
k (ν, r),

k ≥ 1, m = 1,M ,

W∑

r=0,r 6=ν

p
(m)
0 (ν, r) +

∞∑

k=1

W∑
r=0

p
(m)
k (ν, r) = 1, ν = 0,W , m = 1,M.

We introduce the matricesD(m)
k , k ≥ 0, m = 1,M , whose elements are defined by:

(D
(m)
0 )ν,ν = λ(m)

ν , ν = 0,W ,

(D
(m)
0 )ν,r = λ(m)

ν p
(m)
0 (ν, r), ν, r = 0,W , ν 6= r,

(D
(m)
k )ν,r = λ(m)

ν p
(m)
k (ν, r), k ≥ 1, ν, r = 0,W .

Then, the MAP input flow is completely defined by the set of only two types of matrices
D

(m)
k , k = 0, 1, m = 1, M .

A customer who meets a full buffer is rejected and lost.
The service process is defined by the modification of the Phase-type service-time dis-

tribution (see, e.g., Neuts, 1981). The service time is interpreted as the first passage time
until a continuous-time Markov chainηt, t ≥ 0 reaches the absorbing state. This chain has
the state space{1, . . . , K}. Given a fixed valuem of the random environmentξt, t ≥ 0,
transitions of the chainηt, t ≥ 0 within the state space are defined by the irreducible
sub-generatorS(m) while the intensities of transitions into the absorbing state are defined
by the vectorS(m)

0 = −S(m)e. Heree is a column vector of all ones of appropriate size.
At the beginning of the service, the state of the processηt, t ≥ 0 is chosen according to
the row vectorβ(m) of probabilities,m = 1,M .

At service completion, the customer who got the service leaves the system forever
with probabilitypm when the current state of the random environment ism, m = 1,M .
With the complementary probability1 − pm, the customer immediately returns to the
server to get repeated processing.

The admitted customers are served according to a First In - First Out (FIFO) discipline.
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3 Stationary Distribution of the Queue Length

We consider the four-dimensional continuous-time processζt = {it, ξt, νt, ηt}, t ≥ 0,
whereit is the number of customers in the system at the epocht, t ≥ 0, it = i, i = 0, N ,
the components{ξt, νt, ηt}, t ≥ 0 are defined above,ξt = m,m = 1,M , νt = ν, ν =
0,W , ηt = n, n = 1, K. It is easy to see that this process is a Markov chain. Due to
the assumptions made about the random environment processξt, t ≥ 0, the underlying
processνt, t ≥ 0, governing the MAP and the processηt, t ≥ 0, the processζt, t ≥ 0
is a regular irreducible continuous-time Markov chain with a finite state space. Due to
Foster’s criterion, it has a unique stationary distribution. We denote its stationary state
probabilities by

p(0,m, ν) = lim
t→∞

P{it = 0, ξt = m, νt = ν}
p(i,m, ν, n) = lim

t→∞
P{it = i, ξt = m, νt = ν, ηt = n},

i = 1, N,m = 1,M, ν = 0,W , n = 1, K.

Enumerating the states of the chainζt, t ≥ 0 in lexicographical order,pi, i = 0, N
represents the vector of probabilities corresponding to the statei of the entryit. Let
p = (p0, . . . ,pN).

Lemma 1. The vectorspi, i = 0, N , satisfy the system

p0C̃ + p1H̃ = 0,

p1C + p0D̃1 + p2H = 0,
piC + pi−1D1 + pi+1H = 0, i = 2, N − 1,
pN (C +D1) + pN−1D1 = 0,

(1)

where
Dk = diag{D(m)

k ⊗ IK , m = 1, M}, k = 0, 1,

D̃1 = diag{D(m)
1 ⊗ β(m), m = 1,M},

˜̃Dk = diag{D(m)
k , m = 1,M}, k = 0, 1,

C = Q⊗ IWK +D0 + S −H,

C̃ = Q⊗ IW +
˜̃D0,

H = diag{IW ⊗ S
(m)
0 β(m)pm, m = 1,M},

H̃ = diag{IW ⊗ S
(m)
0 pm, m = 1, M},

S = diag{IW ⊗ (S(m) + S
(m)
0 β(m)), m = 1,M}.

Herediag{} represents the diagonal matrix with the diagonal entries defined in brackets,
⊗ is the Kronecker product of matrices,0 is a row vector of zeros,I is the identity matrix
of a dimension defined by the context or by the suffixW = W + 1.

Proof. The proof of the lemma is implemented by a standard calculation of the tran-
sition probabilities of the Markov chain. during a very small time interval.¥

Theorem 1.The vectorspi, i = 0, N , of the stationary probabilities are calculated as
follows:
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pi = p0Φi, i = 1, N,

wherep0 is the unique solution of the following system of linear equations:

p0

(
C̃ + G1H̃

)
= 0, p0

N∑
i=0

Φie = 1,

Φ0 = I, Φi = Φi−1Gi, i = 1, N.

The matricesGi are defined as follows:

• for N = 1,
G1 = −D̃1 (C +D1)

−1 ,

• for N > 1,

Gi =




−D̃1 (C + G2H)−1 , i = 1,

−D1 (C + Gi+1H)−1 , i = 2, N − 1,

−D1 (C +D1)
−1 , i = N.

Proof. The proof follows from the application of the reduction algorithm to the system
(1) starting at the last equation.¥

4 Sojourn Time Distribution

From a practical perspective, the sojourn time of a customer and its mean value are some
of the most important performance measures of any queueing system. For a finite queue-
ing system, the following two versions of the sojourn time are considered: (i) the sojourn
time for an arbitrary customer, (ii) the sojourn time for a successful customer, i.e. a cus-
tomer that is not lost due to a full buffer at its arrival. In this paper, both versions are
considered.

First of all, we consider the average intensity of the input flow. It is defined by

λ = x
˜̃D1 e, (2)

wherex is the unique solution of the following system of linear equations:

x

(
C̃ +

˜̃D1

)
= 0, xe = 1. (3)

Lemma 2. The average intensity of the input flowλ is calculated as follows:

λ = p0D̃1e +
N∑

i=1

piD1e. (4)

Proof. Multiplying both sides of system (1) byIM(W+1)⊗ eK and summing them up,
we get the following system of linear equations:

(
p0 +

N∑
i=1

pi

(
IM(W+1) ⊗ eK

)
)(

C̃ +
˜̃D1

)
= 0. (5)
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Taking into account the normalization condition
∑N

i=0 pie = 1 and the expression above,
it can be easily seen thatx = p0 +

∑N
i=1 pi

(
IM(W+1) ⊗ eK

)
. In this way, the expression

(2) is equivalent to (4).¥

Secondly, we have to calculate the value of the probabilityPloss that an arbitrary cus-
tomer is lost in front of the system.

Lemma 3. The loss probabilityPloss is calculated as follows:

Ploss = λ−1pND1e. (6)

Proof. It is obvious that the customer is lost if there areN customers in the system
at his arrival epoch. The termλ−1pND1 defines the distribution of the finite components
{ξt, νt, µt} of the Markov chainζt, t ≥ 0 just after such an arrival epoch.¥

At third, we have to find the joint stationary distributionπi,i = 0, N of the processes
it, ξt, ηt at the epoch just before the arrival of a customer and of the processνt, t ≥ 0 after
this arrival epoch.

Theorem 2. The vector generating functionΠ(z) =
∑N

i=0 πiz
i, |z| ≤ 1 satisfies the

following equation:

zΠ(z) = zN+1Ploss + λ−1

N∑
i=1

pi

(
H−

i−1∑
j=0

zj (Γz +H)

)
, (7)

whereΓ = C +D1.
Proof. It can be shown thatπ0 = λ−1p0D̃1, πi = λ−1piD1, i = 1, N . Multiplying

both sides of the equilibrium equations (1) byzi,i = 1, N and summing them up, we get
the following equation for the vector generating functionp(z) =

∑N
i=1 piz

i:

p(z)C + pND1z
N

+
(
p(z)z − pNzN+1

)D1 + zp0D̃1 + z−1 (p(z)− zp1)H = 0.
(8)

We rewrite (8) in the form:

(z − 1)
(
zp0D̃1 + zp(z)D1

)

= z
(
p1H− p0D̃1

)
+ (z − 1)zN+1pND1 − p(z) (Γz +H) .

(9)

Substitutingz = 1 into (9), we get:

p(1) (Γ +H) = p1H− p0D̃1. (10)

We substitute
(
p1H− p0D̃1

)
in (9) using (10) and get:

(z − 1)
(
zp0D̃1 + zp(z)D1

)

= (z − 1)zN+1pND1 + (z − 1)p(1)H− (z − 1)
N∑

i=1

pi

i−1∑
j=0

zj (Γz +H)
(11)
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Dividing both sides of (11) byλ(z − 1), we derive (7).¥

Theorem 3. The Laplace-Stieltjes transform of the sojourn-time distribution of an
arbitrary customer has the following form:

W (s) = λ−1

N∑
i=1

pi

(
He− s

i∑
j=1

(Z(s))j e

)
+ Ploss, s ∈ 6C, Res > 0 (12)

whereZ(s) = (sI − Γ)−1H, s ∈ 6C, Re s > 0.
Proof. The proof is based on the probabilistic interpretation of the Laplace-Stieltjes

transform.
We assume that, independently of the system operation, a stationary Poissonian input

of so called catastrophes arrives. Lets > 0 be the intensity of this flow.
Let W̃ (x) be the distribution function of the sojourn time of an arbitrary customer.

Then, its Laplace-Stieltjes transform

W (s)
def
=

∞∫

0

e−sxdW̃ (x)

can be interpreted as the probability of no arrivals of catastrophes during the sojourn time.
This argument allows us to derive the expression forW (s) by probabilistic reasoning.
The obtained results are valid only for reals > 0. But there exists the unique analytic
continuation of the obtained function to the right half of the complex planes ∈ 6C, Re s >
0.

It is easy to see that the functionW (s) can be calculated by the formula of total
probability in the following form:

W (s) = π0W1(s) +
N−1∑
i=1

πiWi+1(s) + πNe. (13)

The entries(Wi(s))m,ν,η of the vectorWi(s) are the probabilities of no arrivals of
catastrophes during the virtual sojourn time withi customers at the system and a given
state(m, ν, η) of the process{ξt, νt, ηt}, t ≥ 0 at the arrival epoch of the virtual customer.
The vectorWi(s) is calculated by

Wi(s) =

∞∫

0

e−st Pi(t, 0)H dt e, (14)

where the matricesPi(t, l) have entries(Pi(t, l))m,ν,η;m′,ν′,η′ . The latter are defined as
the probability to havel customers in the system in front of the tagged customer and to
observe the state(m′, ν ′, η′) of the process{ξτ , ντ , ητ}, τ ≥ 0 at the epocht provided
that i, 0 ≤ l ≤ i, customers were in front of this customer and the state of the process
(ξτ , ντ , ητ ), τ ≥ 0, was given by(m, ν, η) at the epoch0.

We combine the matricesPi(t, l) into the block row vector:

Pi(t) = (Pi(t, 0), . . . , Pi(t, i))
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Then the differential equation
d

dt
Pi(t) = Pi(t)Ψi

can be derived. Here all blocks of the matrixΨi except the diagonal blocks which are
equal toΓ and the sub-diagonal blocks, that are equal toH, are zero. Solving this equation
with an obvious initial condition

Pi(0) = (0, ..., 0, I)

and exploiting (14), we get the formula

Wi(s) = (0, ..., 0, I)(sI −Ψi)
−1(I, 0, ..., 0)THe = (Z(s))i e.

Note that the matrixH should be replaced by the matrix̃H in the case when the tagged
customer is the single one in the system at the moment of his departure. ButHe = H̃e
and there is no need to consider this case separately.

The determinant of the matrix(sI − Γ) is not equal to zero forRe s ≥ 0 due to O.
Tausska’s theorem, see Gantmacher (1967).

At this stage, the expression ofW (s) is as follows:

W (s) = λ−1

(
p0D̃1Z(s)e +

N−1∑
i=1

piD1 (Z(s))i+1 e

)
+ Ploss, Re s ≥ 0.

Substitutingz in (7) byZ(s) and noting thatΓZ(s)+H = sZ(s), we finally derive (12).
¥

Theorem 4.The Laplace-Stieltjes transformWsuccess(s) of the sojourn-time distribu-
tion of a successful customer has the following form:

Wsuccess(s) =

N∑
i=1

pi

(
He− s

i∑
j=1

(Z(s))j e

)

λ(1− Ploss)
, Re s > 0.

Proof. RegardingWsuccess(s) the formula of total probability has the following form:

Wsuccess(s) = α0W1(s) +
N−1∑
i=1

αiWi+1(s).

Hereαi,i = 0, N − 1 are the stationary probabilities of the components{it, ξt, ηt},t ≥ 0
of the processζt,t ≥ 0 at the epoch before the arrival of a successful customer and of the
processνt, t ≥ 0 after this arrival epoch. It can be shown thatα0 = (λ(1−Ploss))

−1p0D̃1,
αi = (λ(1− Ploss))

−1piD1, i = 1, N − 1. Using this fact, we can easily repeat the proof
of the previous Theorem for our case.¥

Corollary. The mean sojourn timesW andWsuccess of an arbitrary and a successful
customer, respectively, satisfy Little’s law:

λ W = L,

λ(1− Ploss) Wsuccess = L,

whereL =
N∑

i=1

ipie is the mean number of customers in the system.
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5 Numerical Examples

To illustrate the feasibility and outcome of the presented algorithms, we consider the
following example.

Let the Markov chainξt, t ≥ 0 of the random environment have two states. It is
defined by the infinitesimal generator:

Q =

(−1.4 1.4
1.8 −1.8

)
.

TheMAP input is characterized by the matrices

D
(1)
0 =

(−86 0.01
0.02 −2.76

)
, D

(1)
1 =

(
85 0.99
0.2 2.54

)

when the random environment stays in the state1 and by the matrices

D
(2)
0 =

(−8 1
2 −12

)
, D

(2)
1 =

(
2 5
4 6

)

when the state of the random environment is determined by2.
The service-time distribution of Phase-type is characterized by the vectorsβ(1) =

(0.2, 0.8), β(2) = (0.9, 0.1) and the sub-generators

S(1) =

(−170 15
40 −210

)
, S(2) =

(−110 80
10 −150

)
.

In the experiment, we fix the parameters of theMAP input andPH services as well
as the queue capacityN = 10 and change the probabilitiespm to leave the system after
the service completion when the random environment is in the statem,m = 1, 2.

The Figures 1,2,3 illustrate the dependence of the valuesL, p0e, Ploss on the proba-
bilities p1 andp2. As noticed by these figures, the observed values change in a monotone
manner until the pointp1 = p2 = 1, when the system is completely unavailable for
incoming customers. HereL = N , p0e = 0, Ploss = 1 hold.

6 Conclusion

The feedback queueing model of the typeMAP |PH|1|N operating in a Markovian ran-
dom environment has been investigated. The random environment has a finite state space.
Changes of its state causes instantaneous changes of the parameters of theMAP input
and the Phase-type service processes as well as the probability of a repeated service.

The stationary distribution of the associated multi-dimensional continuous-time Markov
chain describing the behavior of the system has been calculated. Furthermore, the Laplace-
Stieltjes transform of the sojourn-time distribution of an arbitrary customer and a success-
ful customer and a variant of Little’s law has been derived.

The work of the derived elaborated algorithms has been illustrated by numerical ex-
amples.

The presented results can be applied to the capacity planning of realistic feedback
systems and the performance evaluation in situations where a repeated service of objects
is required and the operation on the object is subject to some external influence.
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Figure 1: Dependence of the average
queue lengthL on the feedback probabil-
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