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Abstract: A new parameters’ encompassing test is proposed for deciding
between the deterministic unit root processes with a structural break and the
bilinear unit root model without such break. The test consists in testing three
sets of hypotheses regarding parameters in a simple regression model. The
test uses thet-ratio andF -statistics, of non-trivial distributions under the null
hypothesis. The finite sample distributions for the relevant statistics are tab-
ulated and the asymptotic distribution of theF -test is derived. The test has
been applied for the daily stock price indices for 66 countries, for the period
1992-2001. The results support the conjecture that the bilinear model domi-
nates the structural break model more often than the other way around. Also,
it is likely that in practical applications the bilinear unit root process might be
mistaken for the deterministic unit root process with a structural break.
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1 The Model

The paper considers two particular stochastic processes embedded within the following
general process:

ut = dt + yt, yt = ρtyt−1 + vt (1)

where dt is a deterministic part,E (yp
0)

2 < ∞, vt = δ(L)εt =
∑∞

j=0 δjεt−j and∑∞
j=0 j|δj| < ∞ (see Ng and Perron, 2001),ρt is series of (possibly degenerated) ran-

dom variables,εt ∼ IID(0, σ2) andt = 1, 2, . . . ,T . The deterministic part in (1) is given
as:

dt = const. + γBt, (2)

whereBt is a variable indicating a nonlinear change in the deterministic part of the pro-
cess. The most commonly used form of the break is either the ‘slope’:

Bt =

{
(t− TB), for t > TB,

0, otherwise,
(3)

or the ‘step’:

Bt =

{
0, for t < TB,
1, otherwise,

(4)
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andTB indicates the position of the beginning of the structural break in the series. A
number of other, more complex, specifications ofBt is also possible (see Vogelsang and
Perron, 1998; Harvey and Mills, 2002).

As far as the unit root part in (1) is concerned, the following terminology is introduced:
(a) The unit root process has adeterministicunit root and islinear if in (1) ρt = 1 and

in (2) γ = 0.
(b) The unit root process isdeterministicunit root and isnonlinear if ρt = 1 and

γ 6= 0.
(c) The unit root process has astochasticunit root if ρt is a non-degenerated random

variable with the expected value of one. In this paper we only consider the stochastic unit
root process without a deterministic part, that is whereγ = 0.

The first two processes, (a) and (b), constitute a family of the deterministic unit root
(URD) processes. The literature on testing and evaluation of theURD processes is well
developed. In particular, the nonlinearURD models (and such models are considered in
this paper) are analysed in Kim et al. (2000); Ng and Perron (2001); Perron (1989, 1990,
1997); Vogelsang and Perron (1998); Zivot and Andrews (1992). Among the stochastic
unit root processes, this paper focuses on the bilinear unit root (URB) process of the first
order (see Charemza et al., 2005), defined as:

ρt = 1 + bεt−1, b 6= 0, where cov(ρt, εt) = 0.

For other specifications of the stochastic unit root models see e.g. Granger and Swanson
(1997); Leybourne et al. (2000); McCabe and Tremayne (1995); Sollis et al. (2000). We
consider a simple case of (1) wheredt = 0 andνt = εt, which gives:

yt = (1 + bεt−1) yt−1 + εt. (5)

For b = 0, (5) becomes a simpleURD process, without any deterministic part (a random
walk). The process (5) is nonstationary, since1 + b2σ2 ≥ 1 (see Granger and Andersen,
1978). In Charemza et al. (2005) it is shown that, under the null hypothesis thatb = 0 the
Studentt statistic for̂b in the regression equation:

∆yt = b̂yt−1∆t−1 + et (6)

whereet are the regression residuals, has an asymptotic standard normal distribution. It is
also shown that the similar test statistics can be formulated for a regression containing an
intercept and for demeaned series of first differences ofyt. If the relationship betweenνt

andεt is more complex, that is, whereνt is described by a fully defined moving average
process, it is possible to add augmentations to (6), as in the Augmented Dickey-Fuller
test.

2 The Test

In order to decide whether aURD (possibly nonlinear, with a deterministic break) or a
URB (without a deterministic break) model describes the series in a more accurate way,
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a simple encompassing exercise has been performed. It is based on the following regres-
sion:

∆yt = ĉ + b̂yt−1∆yt−1 + γ̂Bt +
k∑

i=1

ci∆yt−i + et, (7)

so that̂c, b̂ andγ̂ are the estimates forc, b andγ. There are three sets of the hypotheses of
interest to be considered:

(A) H0: b = 0 andγ = 0 andH1: b 6= 0 and/orγ 6= 0
(B) H0: γ = 0 andH1: γ 6= 0
(C) H0: b = 0 andH1: b 6= 0
The rejection ofH0 in (A) confirms that the unit root process is either subject to

bilinearity, or a structural break. Further on, the rejection ofH0 in (B) confirms the
existence of the deterministic structural break without much evidence of theURBprocess.
If, however,H0 is rejected in (A) and (C) and is not rejected in (B), this would implicitly
confirm the existence of theURBand not theURD with break process.

For testing these sets of hypotheses we use Studentt-statistics and, additionally in (A),
theF statistic for testing the joint significance ofb andγ on the basis of their estimatorsb̂
andγ̂. In (A), under the null hypothesis, the asymptotic distribution of thet-statistic forγ̂,
denoted ast(γ̂) is standard normal. However, since the finite sample distribution oft(b̂)
is non-standard, the distribution of theF -statistic is unknown and has to be approximated
numerically. The limit distribution ofF -statistic in case of ‘step’ is given by the following
theorem:

Theorem. Let the seriesyt be generated by

yt = yt−1 + εt, εt ∼ IID(0, σ2), y0 = 0, t = 1, 2, . . . , T. (8)

Consider the regression model(7) with Bt defined by(4). Denote byλ the ratio of time of
breakTB to the sample sizeT and assume that it is constant (asT goes to infinity), that
is

TB

T
= λ = cons. (9)

Under the null hypothesis ofb = γ = 0, asT →∞ theF -statistic has a limit distribution
of the form:

F ⇒ 1
2




(
1∫
0

W1(t)dW2(t)

)2

1∫
0

W 2
1 (t)dt

+
(1−

√
λ)(4−λ)

λ(1+
√

λ)
W 2

1 (1)


 ∼

1
2

[
χ2

1 (1) +
(1−

√
λ)(4−λ)

λ(1+
√

λ)
χ2

2 (1)
]
,

(10)

where⇒ denotes weak convergence whenT →∞, W1, W2 are two independent Wiener
processes on[0,1] , and χ2

1 (1) , χ2
2 (1) , are two independent chi-squared distributions

with one degree of freedom3 .
Proof of the Theorem is based on the following Lemma:

3We are grateful to Mikhail Lifshits for additional comment on the independence of the chi squared
variables in this theorem.
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Lemma. Let the seriesyt be generated by(8). For the regression model(7) with
BREAKt defined by(4) under the null hypothesis ofb = γ = 0, asT →∞:

1)
√

T ĉ ⇒ σ√
λ
W1 (1),

2) T b̂ ⇒
1∫
0

W1(t)dW2(t)

σ
1∫
0

W 2
1 (t)

,

3)
√

T γ̂ ⇒ σ√
λ(1+

√
λ)

W1 (1),

where⇒ denotes weak convergence,W1, W2 are two independent Wiener processes
on [0,1] andλ is defined by(9).

The proofs of Lemma and the Theorem above are given in Appendix A.
It can also be shown that in (B), under the null hypothesis, the asymptotic distribu-

tion of t(γ̂) is not normal and it depends onb. Moreover fort(b̂) in (C), under the null
hypothesis, that is for the Student-t statistic for the parameterb, the asymptotic normal-
ity is no longer the case, although the limit distribution remains well-defined as long as
0 < b ≤ 1/

√
T (see Lifshits, 2002).

In order to facilitate testing, critical values for particular tests (assuming additionally
the normality ofεt) have been computed in a series of Monte Carlo experiments. Apply-
ing (7) to data generated by (5) withb = 0 gives approximate distributions of relevant
statistics under the null hypothesis in (A). Similarly, applying (7) to data generated by (5)
with non-zero values ofb gives distributions of the statistics in (B) under the null hypoth-
esis. In our experiments the parameterb has been chosen in such a way that the largest
one corresponds tob = 1/

√
T and the subsequentb’s are proportionally smaller;b is de-

fined asb = d/
√

T , whered = 1, 0.5, 0.25 and 0. Ford = 0, the data generating process
correspond to the null hypothesis in (A), otherwise it is that of (B). Value ofTB, that is,
time indicator of a break, see (3) and/or (4), has been set at 0.85T . This corresponds to
the empirical example used in this paper (see further in Section 3). For each set of param-
eters and each sample size (T = 1,000, 1,500, 2,500), 100,000 replications were made. It
turned out that sample size do not affect the results markedly.

Table 1 presents the relevant percentiles obtained in each experiment. The way of
using this table is the following. To test the set of (A) hypotheses use values given in
column headedd = 0. For testing the set of (B) hypotheses, it is necessary to compute
δ = b̂

√
T . Next, choose a column headed byd to whichδ could be rounded and use its

percentiles as the critical values.

3 Empirical Results

In the empirical analysis we use daily (session-to session) data on prices and returns on
66 stock markets worldwide for the period from the 23rd of March 1992 until the 6th of
December 2001. The length of the series varies from 1100 to 2534. It is assumed here
that the possible breakpoint in the series, that isTB in (3) and/or (4), is unknown. As
the criteria for selection of the break date we use Zivot and Andrews (1992) criterion,
according to which the break is in the period where the linear unit roott-statistic is the
smallest. Other criteria considered by Vogelsang and Perron (1998) were also used, giving
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Table 1: Critical values for the encompassing test

Test percent. d = 0 d = 0.25 d = 0.50 d = 1
1% -3.45 -3.04 -2.85 -2.56
5% -2.75 -2.38 -2.12 -1.61

t(b) 10% -2.40 -1.98 -1.69 -1.05
90% 2.40 3.11 3.96 5.96
95% 2.75 3.75 5.41 9.09
99% 3.45 5.62 10.37 16.19
1% as in N(0,1) -2.95 -3.38 -3.87
5% as in N(0,1) -2.04 -2.11 -2.93

t(γ) 10% as in N(0.1) -1.55 -1.60 -2.25
90% as in N(0,1) 1.83 2.19 2.76
95% as in N(0,1) 2.40 2.82 3.57
99% as in N(0,1) 3.54 4.04 4.96
90% 4.47 N/A N/A N/A

F (b, γ) 95% 5.42 N/A N/A N/A
99% 7.53 N/A N/A N/A

similar results.
It can be concluded that theURB process without a break encompasses theURD

process with a break if for (7) theF -statistic is significant,b is significant under (A) and
(B) andγ is not significant under (B). Analogously, theURDprocess with a deterministic
break encompasses theURBprocess without a break if, in addition to theF-statistic being
significant in (A),γ is significant under (B) andb is not significant under (C).

The detailed results of the encompassing exercise are presented at Table 2 at the Ap-
pendix B. They indicate that theURB-no break test shows, on the balance, some advantage
over theURD-break approach. In 26 cases out of 66 the result is such that thet-statistic
for b̂ under the set of hypotheses (C) remains significant while the corresponding statis-
tic for γ̂ loses its significance under the set of hypotheses (B). Since in all these cases the
URDmodel, while tested separately, appears to be significant, it might be concluded that a
true bilinear unit root process might frequently be mistaken for the deterministic unit root
process with a structural break. In 6 cases, however, theURDmodel seems to encompass
the URB model. This includes the important USA market, for which the deterministic
unit root model with a structural break appears to be superior. Among 6 countries for
which theURDmodel encompassesURB, there is only one, Jordania, which is not within
theG25group of the 25 richest (in terms of per capita realGDP) countries. Additionally
we have found that only 6 countries belonging to theG25 group are among the 26 for
which theURB model encompassesURD. Hence, it seems that unit root bilinearity is
more typical for the emerging and developing markets rather than for the mature markets.

Under (B), a relatively large number of insignificant results suggest that the problem of
identification of underlying stochastic patterns for financial time series is far from being
solved. True dynamics of these series is presumably more complicated and involves a
mixture of a stochastic unit root process with that of a deterministic break. This, however,
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requires further investigation.

4 Conclusions

Stochastic unit root modelling and, in particular, the bilinear unit root approach presented
here, offers an attractive alternative to the traditional (deterministic) unit root analysis.
The concept of the bilinear unit roots can substantially enrich the analysis traditionally
conducted within the deterministic unit root framework. More specifically, a possible
speculative bubble interpretation of theURBmodel and the computationally simple nature
of its tests create an interesting tool for the analysis of ups and downs on financial markets.
So far, speculative bubbles have been regarded as difficult to treat on the grounds of
unit root econometrics (see e.g. Evans, 1991). Results presented here also reveal that
a substantial number of the empirical financial time series exhibits unit root bilinearity.
Testing for this particular form of the stochastic unit root is feasible and can be done
without the need for developing specialised software. Finally theURB process, being
lowly parameterised, does not require specific assumptions or additional tests regarding
the nature or timing of the structural breaks.

Appendix A. Proofs of Lemma and Theorem

Proof of the Lemma. Consider the data generating process (DGP) given by equation:

yt = yt−1 + εt, εt ∼ IID(0, σ2), y0 = 0, t = 1, 2, . . . , T. (11)

For the parameters of the equation of interest (7) the usualOLSestimator is given as:

[
ĉ, b̂, γ̂

]′
= (X ′X)

−1
X ′Y, (12)

where:

X =




1 y1∆y1 0
1 y1∆y1 0
. . . . . . . . .
1 yTB−2∆yTB−2 0
1 yTB−1∆yTB−1 1
. . . . . . . . .
1 yT−1∆yT−1 1




, andY =




∆y2

∆y3

. . .
∆yT


 , (13)

andTB is a moment of a possible break. To obtain the asymptotic of matricesX ′X and
X ′Y (with X andY defined by (13)) under theDGP of (11) and the null hypothesis of
b = γ = 0, let us apply the Donsker ‘s theorem and some results of Charemza et al.
(2005), namely of the Statement, section 1 and Lemma C, sections (3) and (4), which



W.W. Charemza and S. Makarova 85

give:

T−1 (XX ′)11 ⇒ 1, T−1 (XX ′)12 ⇒ σ2

(
1∫
0

W1 (t) dW1 (t) + 1

)
,

T−1 (XX ′)13 ⇒ 1− λ, T−2 (XX ′)22 ⇒ σ4
1∫
0

W 2
1 (t) dt,

T−1 (XX ′)23 ⇒ (1− λ) σ2

(
1∫
0

W1 (t) dW1 (t) + 1

)
, T−1 (XX ′)31 ⇒ 1− λ,

(14)

and

T−1/2 (X ′Y )11 ⇒ σW (1) , T−1 (X ′Y )21 ⇒ σ3
1∫
0

W1 (t) dW2 (t),

T−1/2 (X ′Y )31 ⇒
(
1−√λ

)
σW (1) ,

(15)

where(XX ′)ij and(X ′Y )i1 (i, j = 1, 2, 3) are corresponding elements of matricesX ′X
andX ′Y , ⇒ denotes weak convergence,W1, W2 are two independent Wiener processes
on [0,1] andλ is defined by (9).

Combination of (12), (14) and (15) after some usual algebra complete the proof of the
Lemma.

Proof of the Theorem. The test statistics forb = γ = 0 in (7) has a form of the
F -test:

F =

(
RSS(R) −RSS(UR)

)
/2

RSS(UR)/ (T − 4)
, (16)

whereRSS(R) is sum of squaredOLS-residuals from the restricted regression, that is:

∆yt = c + wt, (t = 2, 3, ..., T ) , (17)

andRSS(UR) is sum of squaredOLS-residuals from the unrestricted regression, that is
from (7). For the restricted model (17) sum of squaredOLS-residuals are:

RSS(R) =
T∑

t=2

ŵ2
t =

T∑

t=2

(∆yt)
2 − T

(
1

T

T∑

t=2

∆yt

)2

, (18)

and, under theDGPof (11) and the null hypothesis ofb = γ = 0, we get:

T
T∑

t=2

(∆yt)
2 = T

T∑

t=2

ε2
t ⇒ σ2 (19)

and:

T

(
1

T

T∑

t=2

∆yt

)2

=

(
1√
T

T∑

t=2

εt

)2

⇒ [σW1 (1)]2 . (20)

Sum of squaredOLS-residuals from the unrestricted regression of (7) with the use of (12)
and (13) may be decomposed as:

RSS(UR) =
T∑

t=2
e2

t =
T∑

t=2
(∆yt)

2 + T ĉ + b̂2
T∑

t=2
(yt−1∆yt−1)

2 − 2ĉ
T∑

t=2
∆yt−1

−2b̂
T∑

t=2
yt−1∆yt−1∆yt + 2b̂ĉ

T∑
t=2

yt−1∆yt−1 − 2γ̂
T∑

t=TB

∆yt−1

+2γ̂ĉ (T − TB) + 2γ̂b̂
T∑

t=TB

yt−1∆yt−1 + γ̂2 (T − TB) .

(21)
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From, (18), (19) and (20) we immediately obtain that, under the null hypothesis and as
T →∞, the denominator in (16) will converge toσ2, that is:

(T − 4)−1 RSS(UR) = (T − 4)−1




T∑

t=2

(εt)
2 − T

(
1

T

T∑

t=2

εt

)2

 ⇒ σ2. (22)

For the nominator in (16), applying the Lemma for decomposition (21), we obtain:

RSS(R) −RSS(UR) ⇒ σ2

(
1∫
0

W1 (t) dW2 (t)

)2

1∫
0

W 2
1 (t) dt

+ σ2

(
1−√λ

)
(4− λ)

λ
(
1 +

√
λ

) W 2
1 (1) . (23)

Combination of (16), (22) and (23) complete the proof the of Theorem.

Appendix B. Empirical Results

Table 2 presents the empirical results of the encompassing test exercise. After names of
particular countries, theF -statistics for testing the joint significance of the parametersb
andγ under the set of hypotheses (A) in (7) are given. Their significance is indicated in
the third column as follows: ‘0’ means no significance, ‘+’, ‘++’ and ‘+++’ means that the
statistic is significant respectively at 0.10, 0.05 and 0.01 level of significance. Column 4
gives the estimates of thet-statistics forb. The next two columns show their significance
in (A) and (B). The last three columns show the values of Student-t statistics forγ in
(A) and (B) respectively. The cases where thet-statistic forb under the set of hypotheses
(B) remains significant while the corresponding statistic forγ loses its significance are in
italics. The codes for countries which belong to the richest (in terms of per capita real
GDP, the so calledG25group) are marked by *.The 6 cases, for which theURD model
seems to encompass theURBmodel are marked by boldfacing.
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Table 2: Results of encompassing test

Bilinearity stat. Break statistic
Code F (b, γ) Snfce t(b) Snfce t(γ) Snfce

(A) (A) (B) (A) (B)
ARGENTINA 33.59 +++ 5.62 +++ 0 -1.43 0 0
AUSTRALIA* 7.67 +++ -2.72 +++ + -0.54 0 0

AUSTRIA* 5.45 ++ -2.32 +++ 0 -0.23 0 0
BANGLADESH 15.57 +++ 3.89 +++ 0 0.65 0 0
BELGIUM* 102.76 +++ 10.01 +++ ++ -1.63 0 0
BRAZIL 21.36 +++ 4.60 +++ 0 -0.40 + 0
CANADA* 8.44 +++ -2.60 +++ + -1.30 0 0

CHILE 155.72 +++ 12.48 +++ ++ -0.13 0 0

CHINA 2.58 0 1.23 +++ 0 -1.04 0 0
COLUMBIA 6.39 ++ -2.53 +++ + 0.11 0 0

CROATIA 4.33 0 2.04 +++ 0 0.42 0 0
CYPRUS* 34.76 +++ 5.83 +++ 0 -0.85 0 0
CZECH REPUBLIC 43.18 +++ 6.57 +++ + -0.06 0 0

DENMARK* 8.83 +++ -2.21 +++ 0 -1.99 ++ ++
EGYPT 10.71 +++ 2.87 ++ 0 -1.57 0 0
ESTONIA 1.33 0 -1.13 +++ 0 0.23 0 0
FINLAND* 13.88 +++ -3.46 +++ +++ -1.38 + 0

FRANCE* 10.34 +++ 2.67 + 0 -1.79 0 ++
GERMANY* 10.19 +++ 2.82 ++ 0 -1.50 0 0
GREECE 59.42 +++ 7.62 +++ + -1.17 0 0

HONG KONG* 6.96 ++ 2.48 + 0 -0.91 0 0
HUNGARY 18.39 +++ -4.25 +++ +++ -0.58 0 0

ICELAND* 13.85 +++ 3.58 +++ 0 -1.01 0 0
INDIA 44.84 +++ 6.68 +++ + -0.43 0 0

INDONESIA 46.91 +++ 6.79 +++ + -0.90 0 0

IRELAND* 7.48 ++ -2.62 +++ + -0.79 0 0

ISRAEL* 3.73 0 1.19 +++ 0 -1.52 0 0
ITALY* 5.58 ++ -1.76 +++ 0 -1.57 + 0
JAPAN* 5.50 ++ 2.09 +++ 0 -1.06 0 0
JORDANIA 15.81 +++ 3.47 +++ 0 1.93 0 ++
KOREA, REP OF 7.86 +++ 2.76 ++ 0 0.49 0 0
LATVIA 17.39 +++ 4.17 +++ 0 0.18 0 0
LEBANON 46.57 +++ 6.78 +++ + -0.74 0 0

LITHUANIA 45.72 +++ 6.76 +++ + -0.17 0 0

LUXEMBOURG* 63.35 +++ 7.42 +++ + -2.87 + +++
MALAYSIA 21.76 +++ 4.66 +++ 0 -0.22 0 0
MAURITIUS 11.40 +++ 3.05 ++ 0 -1.44 0 0
MEXICO 72.29 +++ 8.48 +++ + -0.59 0 0

MOROCCO 68.73 +++ 8.24 +++ + -0.90 0 0

NETHERLANDS* 10.18 +++ 2.01 +++ 0 -2.48 + +++
NIGERIA 0.27 0 -0.52 +++ 0 0.07 0 0
NORWAY* 5.91 ++ -2.00 +++ 0 -1.37 + 0
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Table 2 (cont.): Results of encompassing test

Bilinearity stat. Break statistic
Code F (b, γ) Snfce t(b) Snfce t(γ) Snfce

(A) (A) (B) (A) (B)
NEW ZEALAND* 0.03 0 0.17 +++ 0 -0.02 0 0
PAKISTAN 18.89 +++ 4.34 +++ 0 -0.27 0 0
PERU 85.86 +++ 9.26 +++ ++ -0.45 0 0

PHILIPPINES 90.71 +++ 9.48 +++ ++ -0.88 0 0

POLAND 5.33 + -2.30 +++ 0 -0.20 0 0
PORTUGAL 9.12 +++ -2.61 +++ + -1.51 + 0
ROMANIA 2.65 0 -1.50 +++ 0 0.64 0 0
RUSSIA 3.32 0 -1.82 +++ 0 0.01 0 0
SOUTH AFRICA 49.80 +++ 7.06 +++ + 0.00 0 0

SINGAPORE* 22.89 +++ 4.76 +++ 0 -0.44 0 0
SLOVAKIA 9.14 +++ -2.83 +++ ++ 1.08 0 0

SLOVENIA 234.24 +++ 15.29 +++ ++ 0.71 0 0

SPAIN* 6.06 ++ -2.26 +++ 0 -0.97 0 0
SRI LANKA 273.56 +++ 16.50 +++ +++ 1.14 0 0

SWITZERLAND* 16.14 +++ 3.45 +++ 0 -2.05 0 ++
SWEDEN* 18.65 +++ -4.15 +++ +++ -1.18 0 0

TAIWAN, CHINA 0.75 0 0.81 +++ 0 -0.32 0 0
THAILAND 39.07 +++ 6.25 +++ + 0.00 0 0

TURKEY 20.93 +++ -4.51 +++ +++ -0.74 0 0

U. K.* 18.65 +++ 4.02 +++ 0 -1.58 0 0
UNITED STATES* 5.46 ++ 1.43 +++ 0 -1.85 + ++
VENEZUELA 10.84 +++ 3.14 ++ 0 -1.00 0 0
ZIMBABWE 283.14 +++ 16.82 +++ +++ 0.60 0 0


