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Abstract: A new parameters’ encompassing test is proposed for deciding
between the deterministic unit root processes with a structural break and the
bilinear unit root model without such break. The test consists in testing three
sets of hypotheses regarding parameters in a simple regression model. The
test uses theratio andF’-statistics, of non-trivial distributions under the null
hypothesis. The finite sample distributions for the relevant statistics are tab-
ulated and the asymptotic distribution of thetest is derived. The test has
been applied for the daily stock price indices for 66 countries, for the period
1992-2001. The results support the conjecture that the bilinear model domi-
nates the structural break model more often than the other way around. Also,
itis likely that in practical applications the bilinear unit root process might be
mistaken for the deterministic unit root process with a structural break.
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1 The Model

The paper considers two particular stochastic processes embedded within the following
general process:
u=dy + Y, Yr = peYi-1 + v (1)

where d; is a deterministic partF (yg)2 < o0, vy = O0(L)gy = 25200565 and

27207165 < oo (see Ng and Perron, 2001), is series of (possibly degenerated) ran-
dom variabless; ~ I1D(0,0%) andt =1, 2, ...,T. The deterministic part in (1) is given
as:

d; = const. + v By, (2)

whereB; is a variable indicating a nonlinear change in the deterministic part of the pro-
cess. The most commonly used form of the break is either the ‘slope’

. (t—TB),fOI’t>TB,
B = { 0, otherwise, (3)

or the ‘step’:

o 0, fort < Ty,
B = { 1, otherwise, (4)
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and Tz indicates the position of the beginning of the structural break in the series. A
number of other, more complex, specificationg®fis also possible (see Vogelsang and
Perron, 1998; Harvey and Mills, 2002).

As far as the unit root part in (1) is concerned, the following terminology is introduced:

(a) The unit root process haslaterministiaunit root and idinear if in (1) p, = 1 and
in(2)y =0.

(b) The unit root process ideterministicunit root and isnonlinearif p, = 1 and
v # 0.

(c) The unit root process hasstochastiaunit root if p, is a non-degenerated random
variable with the expected value of one. In this paper we only consider the stochastic unit
root process without a deterministic part, that is whete 0.

The first two processes, (a) and (b), constitute a family of the deterministic unit root
(URD) processes. The literature on testing and evaluation oJfRB processes is well
developed. In particular, the nonlinddRD models (and such models are considered in
this paper) are analysed in Kim et al. (2000); Ng and Perron (2001); Perron (1989, 1990,
1997); Vogelsang and Perron (1998); Zivot and Andrews (1992). Among the stochastic
unit root processes, this paper focuses on the bilinear unit B process of the first
order (see Charemza et al., 2005), defined as:

pr =1+ bei—1, b # 0,where covp;, ;) = 0.

For other specifications of the stochastic unit root models see e.g. Granger and Swanson
(1997); Leybourne et al. (2000); McCabe and Tremayne (1995); Sollis et al. (2000). We
consider a simple case of (1) whete= 0 andv, = ¢,, which gives:

= (1+be—1) yi1 + &4 (5)

Forb = 0, (5) becomes a simpldRD process, without any deterministic part (a random
walk). The process (5) is nonstationary, since b*c* > 1 (see Granger and Andersen,
1978). In Charemza et al. (2005) it is shown that, under the null hypothesitsthathe
Student statistic forb in the regression equation:

Ay = Z;Z/t—1At—1 + & (6)

wheree; are the regression residuals, has an asymptotic standard normal distribution. It is
also shown that the similar test statistics can be formulated for a regression containing an
intercept and for demeaned series of first differenceg.df the relationship between

ande, is more complex, that is, whete is described by a fully defined moving average
process, it is possible to add augmentations to (6), as in the Augmented Dickey-Fuller
test.

2 The Test

In order to decide whether dRD (possibly nonlinear, with a deterministic break) or a
URB (without a deterministic break) model describes the series in a more accurate way,
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a simple encompassing exercise has been performed. It is based on the following regres-

sion:
k

Ay = ¢+ by 1Ay + 7B + Z ciAys—i + ey, (7)
=1
so that?, b and?y are the estimates fer b and~. There are three sets of the hypotheses of
interest to be considered:

(A) Hy: b=0andy =0andH;: b # 0 and/ory £ 0

(B) Hy: v =0andH;: v #0

(C)Hy:b=0andH;:b#0

The rejection ofH, in (A) confirms that the unit root process is either subject to
bilinearity, or a structural break. Further on, the rejectiontfin (B) confirms the
existence of the deterministic structural break without much evidence tfRiBprocess.

If, however, H is rejected in (A) and (C) and is not rejected in (B), this would implicitly
confirm the existence of tHdRBand not thdJRD with break process.

For testing these sets of hypotheses we use Studgatistics and, additionally in (A),
the F statistic for testing the joint significance b&nd~ on the basis of their estimatals
and?y. In (A), under the null hypothesis, the asymptotic distribution oftts&atistic fory,
denoted as(4) is standard normal. However, since the finite sample distributigbpf
IS non-standard, the distribution of tik&statistic is unknown and has to be approximated
numerically. The limit distribution of’-statistic in case of ‘step’ is given by the following
theorem:

Theorem. Let the serieg; be generated by

Yt = Yt—1 +5t7€t ~ [ID(O,O'Q),Z/O = O,t: 1,2,...7T. (8)

Consider the regression modgl) with B, defined by{4). Denote by\ the ratio of time of
breakTs to the sample siz€ and assume that it is constant (Asgoes to infinity), that

is
T
?B = )\ = cons. (9)
Under the null hypothesis é¢f= v = 0, asT — oo the F'-statistic has a limit distribution

of the form:

) 2
1 (Ofwl(t)dW2(t)) N (1_\5)(44\)

F=: Wz ()| ~
2 flwf(t)dt A(1+VA)
0

(10)

1—vVX)(4—X)
e+ S ).
where=- denotes weak convergence whén- oo, Wi, W, are two independent Wiener
processes of0,1] , and x? (1), x3 (1), are two independent chi-squared distributions
with one degree of freeddm
Proof of the Theorem is based on the following Lemma:

3We are grateful to Mikhail Lifshits for additional comment on the independence of the chi squared
variables in this theorem.
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Lemma. Let the serieg); be generated by8). For the regression mod€l7) with
BREAK defined by(4) under the null hypothesis é¢f= v = 0, asT — oc:

1)VTeé = SWi (1),

le(t dWa(t)
2) Th = s E—
crf WE(t)

3) VT = (1+W)W1( )

where=- denotes weak convergend&;, IV, are two independent Wiener processes
on[0,1] and ) is defined by(9).

The proofs of Lemma and the Theorem above are given in Appendix A.

It can also be shown that in (B), under the null hypothesis, the asymptotic distribu-
tion of £(4) is not normal and it depends &n Moreover fort(b) in (C), under the null
hypothesis, that is for the Studenstatistic for the parametér the asymptotic normal-
ity is no longer the case, although the limit distribution remains well-defined as long as
0 < b < 1/V/T (see Lifshits, 2002).

In order to facilitate testing, critical values for particular tests (assuming additionally
the normality ofz;) have been computed in a series of Monte Carlo experiments. Apply-
ing (7) to data generated by (5) with= 0 gives approximate distributions of relevant
statistics under the null hypothesis in (A). Similarly, applying (7) to data generated by (5)
with non-zero values df gives distributions of the statistics in (B) under the null hypoth-
esis. In our experiments the parameétdras been chosen in such a way that the largest
one corresponds o= 1/+/7 and the subsequebis are proportionally smalletj is de-
fined ash = d/+/T, whered = 1, 0.5, 0.25 and 0. Fat = 0, the data generating process
correspond to the null hypothesis in (A), otherwise it is that of (B). Valu&gfthat is,
time indicator of a break, see (3) and/or (4), has been set at/Q.8%his corresponds to
the empirical example used in this paper (see further in Section 3). For each set of param-
eters and each sample size<£ 1,000, 1,500, 2,500), 100,000 replications were made. It
turned out that sample size do not affect the results markedly.

Table 1 presents the relevant percentiles obtained in each experiment. The way of
using this table is the following. To test the set of (A) hypotheses use values given in
column headed = 0. For testing the set of (B) hypotheses, it is necessary to compute
§ = bv/T. Next, choose a column headed #yo which é could be rounded and use its
percentiles as the critical values.

3 Empirical Results

In the empirical analysis we use daily (session-to session) data on prices and returns on
66 stock markets worldwide for the period from the28f March 1992 until the & of
December 2001. The length of the series varies from 1100 to 2534. It is assumed here
that the possible breakpoint in the series, thétisin (3) and/or (4), is unknown. As

the criteria for selection of the break date we use Zivot and Andrews (1992) criterion,
according to which the break is in the period where the linear unit#stdtistic is the
smallest. Other criteria considered by Vogelsang and Perron (1998) were also used, giving
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Table 1: Critical values for the encompassing test

Test  percent. d=0 d=0.25 d=050 d=1
1% -3.45 -3.04 -2.85 -2.56

5% -2.75 -2.38 -2.12 -1.61

£(b) 10% -2.40 -1.98  -1.69 -1.05
90% 2.40 3.11 3.96 5.96

95% 2.75 3.75 5.41 9.09

99% 3.45 5.62 10.37 16.19

1% as in N(0,1) -2.95 -3.38 -3.87

5% as in N(0,1) -2.04 -2.11 -2.93

() 10% as in N(0.1) -1.55  -1.60 -2.25
90% as in N(0,1) 1.83 2.19 2.76

95% as in N(0,1) 2.40 2.82 3.57

99% as in N(0,1) 3.54 4.04 4.96

90% 4.47 N/A N/A N/A

F(b,7) 95% 5.42 N/A N/A N/A
99% 7.53 N/A N/A N/A

83

similar results.

It can be concluded that theRB process without a break encompasses UiRb
process with a break if for (7) the-statistic is significant) is significant under (A) and
(B) and~ is not significant under (B). Analogously, thlRD process with a deterministic
break encompasses tb&B process without a break if, in addition to tRestatistic being
significant in (A),v is significant under (B) andlis not significant under (C).

The detailed results of the encompassing exercise are presented at Table 2 at the Ap-
pendix B. They indicate that théRB-no break test shows, on the balance, some advantage
over theURD-break approach. In 26 cases out of 66 the result is such thatstiagistic
for b under the set of hypotheses (C) remains significant while the corresponding statis-
tic for 4 loses its significance under the set of hypotheses (B). Since in all these cases the
URD model, while tested separately, appears to be significant, it might be concluded that a
true bilinear unit root process might frequently be mistaken for the deterministic unit root
process with a structural break. In 6 cases, howevet)J&B model seems to encompass
the URB model. This includes the important USA market, for which the deterministic
unit root model with a structural break appears to be superior. Among 6 countries for
which theURD model encompassé&iRB, there is only one, Jordania, which is not within
the G25group of the 25 richest (in terms of per capita ré&P) countries. Additionally
we have found that only 6 countries belonging to @25 group are among the 26 for
which theURB model encompassd$RD. Hence, it seems that unit root bilinearity is
more typical for the emerging and developing markets rather than for the mature markets.

Under (B), a relatively large number of insignificant results suggest that the problem of
identification of underlying stochastic patterns for financial time series is far from being
solved. True dynamics of these series is presumably more complicated and involves a
mixture of a stochastic unit root process with that of a deterministic break. This, however,
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requires further investigation.

4 Conclusions

Stochastic unit root modelling and, in particular, the bilinear unit root approach presented
here, offers an attractive alternative to the traditional (deterministic) unit root analysis.
The concept of the bilinear unit roots can substantially enrich the analysis traditionally
conducted within the deterministic unit root framework. More specifically, a possible
speculative bubble interpretation of ti&Bmodel and the computationally simple nature

of its tests create an interesting tool for the analysis of ups and downs on financial markets.
So far, speculative bubbles have been regarded as difficult to treat on the grounds of
unit root econometrics (see e.g. Evans, 1991). Results presented here also reveal that
a substantial number of the empirical financial time series exhibits unit root bilinearity.
Testing for this particular form of the stochastic unit root is feasible and can be done
without the need for developing specialised software. FinallyURB process, being

lowly parameterised, does not require specific assumptions or additional tests regarding
the nature or timing of the structural breaks.

Appendix A. Proofs of Lemma and Theorem

Proof of the Lemma. Consider the data generating procd3&P) given by equation:
Y =Y1 + e, e~ 1ID(0,0%),50=0,t =1,2,...,T. (11)

For the parameters of the equation of interest (7) the USu8lestimator is given as:

~ 7 A1 ! -1~y
& b 4] = (XX XY, (12)
where:
1 y1Ay 0 ]
1 ylAyl 0 AyQ
X=| 1 yryoByr, » 0 | ,andy = | 2% | (13)
I yrp—1Ayry—1 1 AyT
1 oyraAyr 1|

andT}p is a moment of a possible break. To obtain the asymptotic of mati¢&sand

X'Y (with X andY defined by (13)) under thBGP of (11) and the null hypothesis of

b =~ = 0, let us apply the Donsker ‘s theorem and some results of Charemza et al.
(2005), namely of the Statement, section 1 and Lemma C, sections (3) and (4), which
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give:
TU(XX), =1, T (XX),, = o (({1 Wi (t) dW, (£) + 1) ,
T (XX") = 1= A, T2 (XX),, = o O}Wf () dt, (14)
T (XX")y, = (1 \)o? (b/l‘ Wi (t) dW, (£) + 1> ST UXX),, = 1A,

and
1

T2(X'Y),, = oW (1), THX'Y)y, = o [ Wy (t) dWs (t),
T2 (XY )y = (1= VA) oW (1),

where(X X'),; and(X'Y),, (¢,j = 1,2, 3) are corresponding elements of matricesX
and XY, = denotes weak convergendé&y, I, are two independent Wiener processes
on [0,1] andX is defined by (9).

Combination of (12), (14) and (15) after some usual algebra complete the proof of the
Lemma.

Proof of the Theorem. The test statistics fob = v = 0 in (7) has a form of the
F-test:

(15)

~ (RSS — RSSwr)) /2
RSSwr /(T —4)
whereRSS ) is sum of square@LS+esiduals from the restricted regression, that is:

Ay =c+w, (t=2,3,....T), a7)

(16)

and RSS(yg) is sum of square@LS+esiduals from the unrestricted regression, that is
from (7). For the restricted model (17) sum of squatddS+esiduals are:

T T
RSSry = > _wy} (Ay)? =T ( Z Ayt> , (18)
t=2 =2
and, under th®GP of (11) and the null hypotheS|s of=~ = 0, we get:
T T
TY (Ay)? =T & = o’ (19)
t=2 t=2
and:
1z ’
r(xon) - (5 Zet) oW (D (20
t=2

Sum of square®LS+esiduals from the unrestricted regression of (7) with the use of (12)
and (13) may be decomposed as:

T T T
RSS(UR) = t% €t2 = tEQ (A’yt) + TC + b2 Z (yt 1A’yt 1) — 26 t¥2 Ayt—l
. T T
—2b 3"y Ay Ay, + 2bé Z Ye1Ayi1 — 27 X Ay (21)
t=2 t=2 t=Tp

~ T
+29¢ (T — Tg) + Q%t z% Vi 1Ay 1 + 32 (T —Tp).
=1B
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From, (18), (19) and (20) we immediately obtain that, under the null hypothesis and as
T — oo, the denominator in (16) will converge 3, that is:

T

(T —4)"'RSSwpy = (T —4)~" (Z (e0)° =T (; XT: Et> ) =02 (22

t=2

For the nominator in (16), applying the Lemma for decomposition (21), we obtain:

W (1) W <t>) 2

2(1_\/X) (4=2)
A1+ V)

RSS(R) — RSS(UR) = g2 ( +o le (1) (23)

W (1) di
0

Combination of (16), (22) and (23) complete the proof the of Theorem.

Appendix B. Empirical Results

Table 2 presents the empirical results of the encompassing test exercise. After names of
particular countries, thé'-statistics for testing the joint significance of the parameters
and~ under the set of hypotheses (A) in (7) are given. Their significance is indicated in
the third column as follows: ‘0’ means no significance, ‘+’, ‘“++’ and ‘+++’ means that the
statistic is significant respectively at 0.10, 0.05 and 0.01 level of significance. Column 4
gives the estimates of thestatistics forb. The next two columns show their significance

in (A) and (B). The last three columns show the values of Studetétistics fory in

(A) and (B) respectively. The cases where tkstatistic forb under the set of hypotheses
(B) remains significant while the corresponding statisticifdoses its significance are in
italics. The codes for countries which belong to the richest (in terms of per capita real
GDP, the so called525 group) are marked by *.The 6 cases, for which geD model
seems to encompass th&B model are marked by boldfacing.
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Table 2: Results of encompassing test

Bilinearity stat. Break statistic

Code F(b,7) | Snfce t(b) Snfce t(y) | Snfce

(A) (A) | (B) (A) | (B)
ARGENTINA 33.59 +++ 5.62 | +++ 0| -1.43 0 0
AUSTRALIAx* 7.67 +++ | 2.72 | +++ + | -0.54 0 0
AUSTRIA* 5.45 ++ | -2.32 | +++ 0| -0.23 0] 0
BANGLADESH 15.57 +++ 3.89 | +++ 0 0.65 0 0
BELGIUMx* 102.76 +++ | 10.01 | +++ ++ | -1.63 0 0
BRAZIL 21.36 +++ 4.60 | +++ 0| -0.40 + 0
CANADAx* 8.44 +++ | —2.60 | +++ + | -1.30 0 0
CHILE 155.72 +++ | 12.48 | +++ ++ | -0.13 0 0
CHINA 2.58 0 1.23 | +++ 0] -1.04 0 0
COLUMBIA 6.39 ++ | =2.53 | +++ + 0.11 0 0
CROATIA 4.33 0 2.04 | +++ 0 0.42 0 0
CYPRUS* 34.76 +++ 5.83 | +++ 0] -0.85 0 0
CZECH REPUBLIC 43.18 +++ 6.57 | +++ + | -0.06 0 0
DENMARK* 8.83 +++ | -2.21 | +++ O] -1.99 | ++ ++
EGYPT 10.71 +++ 2.87 ++ 0| -1.57 0 0
ESTONTIA 1.33 0] -1.13 | +++ 0 0.23 0 0
FINLAND=* 13.88 +++ | —3.46 | +++ | +++ | -1.38 + 0
FRANCEx* 10.34 +++ 2.67 + 0| -1.79 0 ++
GERMANY* 10.19 +++ 2.82 ++ 0] -1.50 0 0
GREECE 59.42 +++ 7.62 | +++ + | -1.17 0 0
HONG KONGx* 6.96 ++ 2.48 + 0] -0.91 0] 0
HUNGARY 18.39 +++ | =4.25 | +++ | +++ | -0.58 0 0
ICELAND* 13.85 +++ 3.58 | +++ 0] -1.01 0 0
INDIA 44.84 +++ | 6.68 | +++ +1-0.43| o0 0
INDONESTA 46.91 +++ 6.79 | +++ + | -0.90 0 0
IRELAND* 7.48 ++ | —2.62 | +++ + | -0.79 0 0
ISRAELx* 3.73 0 1.19 | +++ 0| -1.52 0 0
ITALY=* 5.58 ++ | -1.76 | +++ 0] -1.57 + 0
JAPANx* 5.50 ++ 2.09 | +++ 0| -1.06 0] 0
JORDANIA 15.81 +++ 3.47 | +++ 0 1.93 0 ++
KOREA, REP OF 7.86 +++ 2.76 ++ 0 0.49 0 0
LATVIA 17.39 +++ 4.17 | +++ 0 0.18 0 0
LEBANON 46.57 +++ 6.78 | +++ + | -0.74 0 0
LITHUANIA 45.72 +++ 6.76 | +++ + | -0.17 0 0
LUXEMBOURG* 63.35 +++ T.42 | +++ + | -2.87 + | +++
MALAYSTA 21.76 +++ 4.66 | +++ 0| -0.22 0 0
MAURITIUS 11.40 +++ 3.05 ++ 0] -1.44 0 0
MEXICO 72.29 +++ 8.48 | +++ + | -0.59 0 0
MOROCCO 68.73 +++ 8.24 | +++ + | -0.90 0 0
NETHERLANDS* 10.18 +++ 2.01 | +++ 0] -2.48 + | +++
NIGERIA 0.27 0] -0.52 | +++ 0 0.07 0 0
NORWAY* 5.91 ++ | -2.00 | +++ 0| -1.37 + 0
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Table 2 (cont.): Results of encompassing test

Bilinearity stat. Break statistic

Code F(b,~) | Snfce t(b) Snfce t(y) | Snfce

(A) A B (A) | (B
NEW ZEALAND=* 0.03 0 0.17 | +++ 0] -0.02 0 0
PAKISTAN 18.89 +++ 4.34 | +++ 0| -0.27 0 0
PERU 85.86 +++ 9.26 | +++ ++ | —0.45 0 0
PHILIPPINES 90.71 +++ 9.48 | +++ ++ | -0.88 0 0
POLAND 5.33 + | -2.30 | +++ 0] -0.20 0 0
PORTUGAL 9.12 +++ | -2.61 | +++ + | -1.51 + 0
ROMANTA 2.65 O] -1.50 | +++ 0 0.64 0 0
RUSSIA 3.32 0] -1.82 | +++ 0 0.01 0 0
SOUTH AFRICA 49.80 +++ 7.06 | +++ + 0.00 0 0
SINGAPORE* 22.89 +++ 4.76 | +++ 0] -0.44 0 0
SLOVAKIA 9.14 +++ | —2.83 | +++ ++ 1.08 0 0
SLOVENTIA 234.24 +++ | 15.29 | +++ ++ 0.71 0 0
SPATIN* 6.06 ++ | -2.26 | +++ 0| -0.97 0 0
SRI LANKA 273.56 +++ | 16.50 | +++ | +++ 1.14 0 0
SWITZERLAND* 16.14 +++ 3.45 | +++ 0] -2.05 0| ++
SWEDEN* 18.65 +H++ | —4.15 | +++ | +++ | -1.18 0 0
TAIWAN, CHINA 0.75 0 0.81 | +++ 0] -0.32 0 0
THAILAND 39.07 +++ 6.25 | +++ + 0.00 0 0
TURKEY 20.93 +++ | =4.51 | +++ | +++ | -0.74 | 0| o0
U. K.*x 18.65 +++ 4.02 | +++ 0| -1.58 0 0
UNITED STATESx* 5.46 ++ 1.43 | +++ 0] -1.85 + | ++
VENEZUELA 10.84 +++ 3.14 ++ 0| -1.00 0 0
ZIMBABWE 283.14 +++ | 16.82 | +++ | +++ 0.60 0 0




