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Abstract: We consider the problem of estimating the scale parameter of an
exponential distribution under multiply type II censoring when a prior point
guess of the parameter value is available. Shrinkage estimators are obtained
from the approximate maximum likelihood estimators proposed in Singh et
al. (2004) and in Balasubramanian and Balakrishnan (1992). These estima-
tors are then compared by their simulated mean squared errors.

Zusammenfassung:Wir behandeln das Problenm der Schätzung des Skalen-
parameters einer Exponentialverteilung unter mehrfacher Typ II Zensierung
der Stichprobe. Dazu nehmen wir an, dass bereits vorweg auch eine Ver-
mutung über den Wert des Parameters vorliegt. Wir erhalten Shrinkage-
Scḧatzer aus den approximativen Maximum-Likelihood Schätzern in Singh
et al. (2004) und Balasubramanian and Balakrishnan (1992). Ein Vergleich
dieser Scḧatzer beruht dann auf deren simulierten mittleren quadratischen
Fehler.
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1 Introduction

In life testing experiments a fixed number of items, sayn, is often put on test simultane-
ously. But the experimenter may not always be in a position to observe the life times of all
these items because of time limitations or other restrictions on the data collection process.
Let us suppose that out of then items only the firstl life-times have been observed and the
life-times of the other(n− l) components remain unobserved and are missing. This type
of censoring is known as right type II censoring. Another way to get censored data is to
observe only the largestm life times. In this case the life times of the first(n−m) compo-
nents are missing. Such censoring is known as a left type II censoring scheme (see Leemis
and Shih, 1989). Moreover, if left and right censoring happen together, this is known as
doubly type II censoring (see Sarhan and Greenberg, 1957). A reverse situation to doubly
type II censoring is mid censoring, where the data on two extremes are available but some
of the middle observations are censored (see Sarhan and Greenberg, 1962). If mid censor-
ing arises amongst doubly censored observations, the scheme is known as a multiply type
II censoring scheme. Balakrishnan (1990) has discussed a more general version of such a
multiply type II censoring, where only ther1th, r2th, . . ., rkth (1 ≤ r1 < · · · < rk ≤ n)
failure times are available. Under this multiply type II censoring scheme even the likeli-
hood estimate for the one parameter exponential distribution is difficult to obtain directly
from the likelihood equation. Balasubramanian and Balakrishnan (1992) and Singh et al.
(2004) proposed some approximate maximum likelihood estimators, which are denoted
asθ̂BL andθ̂UA, respectively.
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In real world situations, particularly in life testing problems, the experimenter may
have evidence that the value of the parameter under study, sayθ, is in the neighborhood
of θ0. We callθ0 the experimenter’s prior point guess. For example, for a patient suffering
from cancer the doctor may believe that the patient will survive two more months. In this
caseθ0 can be taken to be equal to two months. Similarly, a bulb producer may know that
the average life time of his product may be close to 900 hours. Here we may takeθ0 =
900. Now the following questions arise: “Should we useθ0 in the estimation procedure,
which may be a close guess ofθ but may not be its true value?”, or “Should we base our
estimator on sample information only?” Furthermore, if one wishes to incorporate the
additional informationθ0 in the estimation ofθ the question may be “How to use it?”

The purpose of this paper is to study the procedures, which answer the above questions
in order to estimate the scale parameter of an exponential distribution under a multiply
type II censoring scheme. It may be recalled that Thompson (1968) was the first who
proposed a procedure popularly known as shrinkage procedure, which suggests the use
of a prior point guess of the parameter for improving the performance of the existing
estimatorθ̂. If a prior point guessθ0 is available with known confidenceα, 0 < α < 1,
the shrinkage estimator forθ is defined as

TSH = αθ0 + (1− α)θ̂ . (1)

Using Thompson’s technique, the respective shrinkage estimators based on the approxi-
mate maximum likelihood estimatorŝθUA andθ̂BL can easily be defined. Studies of such
types of other estimators reveal that these perform better than the original estimators pro-
vided the true value ofθ is close toθ0 andα is taken to be large. It is also noted that
the performance of these estimators strongly depends on the choice ofα. If α is not set
in accordance with the reality (i.e., largeα whenθ is close toθ0, and smallα whenθ is
away fromθ0), it may happen that either there is no significant gain in the performance
of TSH or there is actually a significant loss. In general, the true value of the parameter is
unknown and, hence, a proper choice ofα can not be guaranteed. Therefore, in the situa-
tions when the experimenter is either not able to provide a fixed value ofα or it is feared
that the value ofα may not be in accordance with the real situation, it may be proposed to
consider (1) as a class of estimators and select the best by choosingα such that the mean
squared error (MSE) ofTSH is at its minimum. It is easy to verify that the optimum value
of α for whichMSE(TSH) is minimized, is

αopt =
MSE2(θ̂)− (θ0 − θ)bias(θ̂)

(θ0 − θ)2 + MSE(θ̂)− 2(θ0 − θ)bias(θ̂)
. (2)

It is clear thatαopt depends onθ. It is therefore suggested to replaceθ in (2) by its estimate,
giving α̂opt. Needless to mention that due to the use ofθ̂ in αopt, the performance of the
shrinkage estimator is expected to be adversely affected.

Comparisons of the performance of shrinkage estimators with the usual estimators are
quite common in the existing literature. But the present paper discusses for the first time
the effect of the use of different estimators on the corresponding shrinkage estimators.
Comparing MSEs, it will be seen that shrinkage estimators based on the approximate
likelihood estimator proposed by Singh et al. (2004) perform better than the one based
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on results in Balasubramanian and Balakrishnan (1992). Singh et al. (2004) proposed
a procedure to obtain an approximate maximum likelihood estimator as an alternative to
the one given in Balasubramanian and Balakrishnan (1992). The present paper aims to
develop the shrinkage estimators from these approximate maximum likelihood estimators
and compare their performances.

In the next section we obtain the shrinkage estimators forθ using a prior point guess.
In Section 3 the proposed estimators are computed for the data given in Balasubramanian
and Balakrishnan (1992) in order to illustrate the procedure discussed here. The MSEs of
all estimators are then compared in Section 5. Finally, a brief conclusion is given.

2 Shrinkage Estimation

Consider a one parameter exponential distribution with pdf

f(x|θ) =
1

θ
exp(−x/θ) , x ≥ 0 , θ > 0 . (3)

Suppose thatn items, whose life-times follow model (3), are placed on test and that the
r1th, r2th, . . ., rkth failure times are recorded asx1, . . . , xk, respectively. The likelihood
function for such a multiply type II censored sample is

L(θ|x) =
n! θ−k

(
1− e−x1/θ

)r1−1

(n− rk)! (r1 − 1)!
∏k−1

i=1 ui!

k−1∏
i=1

(
e−xi/θ − e−xi+1/θ

)ui
e−tk/θ ,

whereui = ri+1 − ri − 1, i = 1, . . . , k − 1, andtk =
∑k

i=1 xi + (n− rk)xk.
The approximate likelihood estimator ofθ proposed by Singh et al. (2004) is

θ̂UA =
tk +

∑k−1
i=1 xiui

k + (r1 − 1) +
∑k−1

i=1 ui

,

whereas the one proposed by Balasubramanian and Balakrishnan (1992) is

θ̂BL =

∑k−1
i=0 (δixi + (1− δi)xi+1)ui + tk

k −∑k−1
i=0 uiγi

, (4)

with r0 = x0 = 0, qi = 1−ri/(n+1), δi = qi/(qi−qi+1)−qiqi+1/(qi−qi+1)
2 log(qi/qi+1),

andγi = (qi+1 log qi+1 − qi log qi)/(qi − qi+1) + δi log qi + (1− δi) log qi+1.

2.1 Specified Confidence

As discussed earlier, the shrinkage estimatorsθ̂UA(α) or θ̂BL(α) can be defined by replacing
θ̂ in (1) by θ̂UA or θ̂BL. Their MSEs can be easily obtained from

MSE(θ̂) = α2(θ0 − θ)2 + 2α(1− α)(θ0 − θ)bias(θ̂) + (1− α)2MSE(θ̂)
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after replacingθ̂ by θ̂UA and θ̂BL, respectively. Expressions forbias(θ̂UA), bias(θ̂BL),
MSE(θ̂UA), andMSE(θ̂BL) can also be easily obtained by using

E(xi) = θS1(n− ri, n) , and cov(xi, xj) = θ2S2(n− ri, n) , i ≤ j ,

whereS1(a, b) =
∑b

l=a+1 1/l andS2(a, b) =
∑b

l=a+1 1/l2. With these results we get

bias(θ̂UA) =
θ

W

k∑
i=1

βiS1(n− ri, n)

bias(θ̂BL) =
θ

V

k∑
i=1

λiS1(n− ri, n)

MSE(θ̂UA) =
θ2

W 2

{
k−1∑
i=1

β2
i

(
S2(n− ri, n) + S2

1(n− ri, n)
)

+2
k−1∑
i<j

∑
βiβj

(
S2(n− ri, n) + S1(n− ri, n)S1(n− rj, n)

)

+β2
k

(
S2(n− rk, n) + S2

1(n− rk, n)
)

+2βk

k−1∑
i=1

βi

(
S2(n− ri, n) + S1(n− ri, n)S1(n− rk, n)

)

+ W 2 − 2W

(
k−1∑
i=1

βiS1(n− ri, n) + βkS1(n− rk, n)

)}

MSE(θ̂BL) =
θ2

V 2

{
k−1∑
i=1

λ2
i

(
S2(n− ri, n) + S2

1(n− ri, n)
)

+ 2
k−1∑
i<j

∑
λiλj

(
S2(n− ri, n) + S1(n− ri, n)S1(n− rj, n)

)

+ λ2
k

(
S2(n− rk, n) + S2

1(n− rk, n)
)

+ 2λk

k−1∑
i=1

λi

(
S2(n− ri, n) + S1(n− ri, n)S1(n− rk, n)

)

+ V 2 − 2V

(
k−1∑
i=1

λiS1(n− ri, n) + λkS1(n− rk, n)

)}

with βi = ui + 1 andλi = −βi + uiδi − ui−1δi−1, i = 1, . . . , k − 1, butβk = n− rk + 1
andλk = n − rk−1 − uk−1δk−1, W = k + r1 − 1 +

∑k−1
i=1 ui, V = k −∑k−1

i=1 uiγi. The
termsδi andγi, i = 1, . . . , k have been already defined.
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2.2 Unspecified Confidence

As suggested in Section 1, the shrinkage estimator based onθ̂UA when point guessθ0 is
available with unspecified confidence can be obtained as

θ̂UA(α) = αUAθ0 + (1− αUA)θ̂UA ,

whereαUA, as defined in (2), can be rewritten as

αUA =
MSE(θ̂UA)/θ2 − (θ0/θ − 1)

(
bias(θ̂UA)/θ

)

(θ0/θ − 1)2 + MSE(θ̂UA)/θ2 − 2(θ0/θ − 1)
(
bias(θ̂UA)/θ

) . (5)

It may be noted from (5) thatMSE(θ̂UA)/θ2 andbias(θ̂UA)/θ are independent ofθ but
αUA still depends onθ due to the termθ0/θ, which can be estimated byθ0/θ̂UA in (5)
giving its estimated valuêαUA. Substitutingα̂UA in place ofαUA, we get the shrinkage
estimator based on̂θUA when a point guess is given with unspecified confidence. This
may be written as,

θ̂UA(α̂) = α̂UAθ0 + (1− α̂UA)θ̂UA . (6)

Similarly, the shrinkage estimator based onθ̂BL may be obtained from (6), after replacing
θ̂UA and α̂UA by θ̂BL and α̂BL, respectively, wherêθBL is given in (4) andα̂BL can be
obtained from (5) after replacingθ andθ̂UA by θ̂BL. It may be noted here that the expres-
sions for the MSEs of̂θUA(α̂) and θ̂BL(α̂) can not be obtained and, therefore, one has no
option except to go for a simulation study to compare their MSEs.

3 Illustrative Example

For illustration we take the example from Balasubramanian and Balakrishnan (1992),
wheren = 30 items were placed on a life-test experiment and their failure times (in
hours) were recorded. The data reported is

0.961 0.990 1.565 2.031 2.204 2.340 3.642 6.008 6.538 7.145
- - - 11.937 15.433 18.234 18.307 22.096 - -
- 28.799 30.692 30.737 33.702 34.245 - - - -

This is a simulated data set from model (3) withθ = 20, where some middle observations
were not recorded and the experiment is supposed to be terminated as soon as the 26th
item failed. Based on this multiply-II censored sample the estimates are calculated and
given in Tables 1 to 3. We see thatθ̂BL(α) or θ̂UA(α) only provide improvements compared
to θ̂BL or θ̂UA, if the guessθ0 equals the true value, i.e.θ0 = 20. For guesses less than
20, the estimates move away from the true value asα increases. SincêθBL andθ̂UA both
underestimate the true parameter, an improvement can be seen ifθ0 is larger than the true
value. On the other hand, if no point guess is available and we useθ̂UA(α̂) and θ̂BL(α̂),
the estimates only improve ifθ0 is quite close the truth. For other values, the estimates
move away from the true value but the magnitude of deviation is smaller as compared to
the case whenθ0 is given with specified confidence. However, it may be remarked here
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that we should not infer about the performance of the estimator on the basis of a single
sample. To study the performance of all the estimators we should study the behavior of
their MSEs in order to draw fair conclusions.

Table 1: EstimateŝθBL(α) based on̂θBL when the guessθ0 is given with confidenceα

θ0 θ̂BL θ̂BL(α)

α = 0.2 α = 0.4 α = 0.6 α = 0.8
16 19.971 19.176 18.382 17.588 16.794
17 19.971 19.376 18.782 18.188 17.594
18 19.971 19.576 19.182 18.788 18.394
19 19.971 19.776 19.582 19.388 19.194
20 19.971 19.976 19.982 19.988 19.994
21 19.971 20.176 20.382 20.588 20.794
22 19.971 20.376 20.782 21.188 21.594
23 19.971 20.576 21.182 21.788 22.394
24 19.971 20.776 21.582 22.388 23.194

Table 2: EstimateŝθUA(α) based on̂θUA when the guessθ0 is given with confidenceα

θ0 θ̂UA θ̂UA(α)

α = 0.2 α = 0.4 α = 0.6 α = 0.8
16 19.320 18.656 17.992 17.328 16.664
17 19.320 18.856 18.392 17.928 17.464
18 19.320 19.056 18.792 18.528 18.264
19 19.320 19.256 19.192 19.128 19.064
20 19.320 19.456 19.592 19.728 19.864
21 19.320 19.656 19.992 20.328 20.664
22 19.320 19.856 20.392 20.928 21.464
23 19.320 20.056 20.792 21.528 22.264
24 19.320 20.256 21.192 22.128 23.064

Table 3: Shrinkage estimates when a guessθ0 is given with unspecified confidence

θ0 θ̂BL θ̂UA θ̂BL(α̂) θ̂UA(α̂)

16.0000 19.9712 19.3196 18.0086 17.4298
17.0000 19.9712 19.3196 18.083 17.5565
18.0000 19.9712 19.3196 18.3978 18.0863
19.0000 19.9712 19.3196 19.0564 18.9977
20.0000 19.9712 19.3196 20.0000 19.9602
21.0000 19.9712 19.3196 20.9341 20.654
22.0000 19.9712 19.3196 21.5723 21.0278
23.0000 19.9712 19.3196 21.8686 21.1799
24.0000 19.9712 19.3196 21.9305 21.2098
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4 Comparing the MSEs of the Estimators

4.1 Specified Confidence

We now compare the performance of the shrinkage estimatorsθ̂UA(α) andθ̂BL(α) with that
of the corresponding approximate maximum likelihood estimators when a point guess is
available with specified confidence. Notice thatMSE(θ̂UA(α)) andMSE(θ̂BL(α)) are both
functions ofθ, θ0, n, α, andri, i = 1, . . . , k. The MSEs of these estimators have been
calculated for various values ofθ, n, α, andri. A number of values have been assigned to
θ0 so that the relative variationφ = (θ − θ0)/θ takes values in(−0.60(0.20)0.60). This
was done to provide a wide variation in the values ofθ0 around the truth.

It is noted that as sample sizen increases the MSE of the estimatorsθ̂UA(α) andθ̂BL(α)

decreases generally, provided the sampling fraction and the type of sample observations
do not change too much. It was further noted that asθ increases the MSE increase without
affecting the relative performances of the estimators. Therefore, only forn = 10 and
θ = 5 the MSEs of the estimators have been shown here in Figure 1.

Moreover, ifφ is close to zero, i.e. ifθ0 is close toθ, the shrinkage estimator̂θBL(α)

has smaller MSE than̂θBL for all choices ofα. However, a greater reduction is obtained
for large values ofα. It may be further noted that for moderate values ofφ, i.e. for
|φ| ≤ 0.5, θ̂BL(α) has always smaller MSE than̂θBL for all α. But if |φ| ≥ 0.5, the
MSE of θ̂BL(α) may be larger than that of̂θBL for large values ofα. The range ofφ
for which θ̂BL(α) has smaller MSE than̂θBL can be increased by takingα small, though
the magnitude of reduction in MSE also decreases. It is also interesting to note that if
the sample contains higher order observations, the greater reduction in MSE is seen for
positive values ofφ, i.e., whenθ0 is smaller than the true value. The situation is reversed
when the observed sample contains lower order values. A similar trend can be observed
for the MSE ofθ̂UA(α), which is generally smaller than that ofθ̂BL(α) for small values of
α. As α increases,MSE(θ̂UA(α)) remains smaller thanMSE(θ̂BL(α)) for small values of
φ, but for large value ofφ the trend is reversed. Forα = 0.9 both shrinkage estimators
have approximately equal MSE. Except for large values ofφ, MSE(θ̂UA(α)) is smaller
thanMSE(θ̂BL(α)).

4.2 Unspecified Confidence

As already mentioned, although the shrinkage estimators are obtained in closed forms,
analytically closed form expressions for their MSE are not available. Therefore, a com-
parison of their MSEs will be based on results of a simulation study. For this purpose,
a Monte Carlo study of 1000 samples each of size 10 was conducted for various values
of θ, φ, n, k andri. The parameter values considered here are the same as in Section
4.1. Notice that a change in theri’s, for k fixed, results in a change of the magnitude of
the MSE. In general, for a fixed number of observations (i.e.,k fixed), if the higher order
observations are taken, the MSE decreases slightly for almost all estimators (see Figure
2). The amount of decrease, however, differs from estimator to estimator. Further, on the
basis of a thorough study of the results, it was noted that the MSEs of all the proposed
estimators increase asθ increases but the trend remains more or less the same.
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Figure 1: MSEs of the estimatorŝθBL (¦), θ̂BL(α=0.1) (4), θ̂BL(α=0.5) (×), θ̂BL(α=0.9) (∗),
θ̂UA (¤), θ̂UA(α=0.1) (•), θ̂UA(α=0.5) (+), θ̂UA(α=0.9) (−), for n = 10, θ = 5, andri =
1, 2, 5, 6, 8 (above),ri = 1, 2, 6, 9, 10 (middle), andri = 3, 4, 7, 8, 9 (below),i = 1, . . . , 5.
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Figure 2: MSEs of the estimatorŝθBL (¦), θ̂BL(α) (4), θ̂UA (¤), θ̂UA(α) (•), for n = 10,
θ = 5, andri = 1, 2, 5, 6, 8 (above),ri = 1, 2, 6, 9, 10 (middle), andri = 3, 4, 7, 8, 9
(below),i = 1, . . . , 5.
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As shown in Figure 2, ifφ = 0 thenθ̂UA(α̂) has the smallest MSE. The MSE ofθ̂BL(α̂)

is also smaller than the ones ofθ̂UA and θ̂BL. As φ increases the MSEs of̂θBL(α̂) and
θ̂UA(α̂) also increase and become larger than those ofθ̂UA andθ̂BL beyond certain limits
of φ, say,φ ∈ (φ1, φ2) with φ1 < −0.6 andφ2 ≈ 0.4. Thus, the shrinkage estimator
provides an improvement only in a subspace around the true parameter value. Generally,
MSE(θ̂UA(α̂)) is also smaller thanMSE(θ̂BL(α̂)) in this subspace. For values ofφ outside
this range, the MSE of̂θUA is smaller than the MSEs of all other estimates.

5 Conclusion

From the above results we may conclude that if a prior point guess is close to the truth,
we can safely use the shrinkage estimatorθ̂UA(α) together with a large value ofα, because
it provides the smallest MSE. On the other hand, if the point guess is expected to be in the
immediate neighborhood, one can still useθ̂UA(α). However, if it is suspected that the true
value ofθ may be far away from the guessed valueθ0, one should never use a shrinkage
estimator. In such situations the best one can do is to useθ̂UA, i.e., the approximate
maximum likelihood estimator proposed by Singh et al. (2004).
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