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Abstract: Using local-to-unity detrending, the GLS-based Dickey-Fuller test
has been shown to possess higher power than other available unit root tests.
As a result, application of this easily implemented test has increased in recent
years. In the present study the finite-sample size and power of the GLS-based
Dickey-Fuller test is examined in the presence of breaks in innovation vari-
ance under the null. In contrast to the original Dickey-Fuller test which has
been shown to suffer severe distortion in such circumstances, the GLS-based
test latter exhibits robustness to all but the most extreme breaks in variance.
The results derived show the GLS-based test to be more robust to variance
breaks than other modified Dickey-Fuller tests previously considered in the
literature.

Zusammenfassung:Mittels Local-to-Unity Detrending wurde gezeigt, dass
der GLS-basierte Dickey-Fuller Test ein@8ere Macht hat als andere vigyf

bare Unit-Root Tests. Deshalb kam es in den letzten Jahren zur vermehrten
Anwendung dieses leicht zu implementierenden Tests. In der vorliegenden
Studie wird unter der Nullhypotheséirf endliche Stichproben das Niveau
und die Macht des GLS-basierten Dickey-Fuller Tests bei Eictoen der
Innovationsvarianz untersucht. Im Gegensatz zum originalen Dickey-Fuller
Test, welcher in derartigen Situationen eine starke Verzerrung erleidet, weist
hierbei der GLS-basierte Test bis auf wenige Ausnahmen bei deksstn
Einbriichen ein robustes Verhalten auf. Die erzielten Ergebnisse zeigen, dass
der GLS-basierte Test auf Varianiélehe robuster reagiert als andere modi-
fizierte Dickey-Fuller Tests, welche bisher in der Literatur betrachtet wurden.

Keywords: Unit Roots, Variance Breaks, Local-to-Unity Detrending, Gener-
alized Least Squares.

1 Introduction

It has long been recognised in the econometrics literature that the seminal Dickey-Fuller
(DF) unit root test (Dickey and Fuller, 1979) possesses low power when applied to near-
integrated, or near unit root, processes. Consequently, a number of modified DF tests with
higher power have been proposed for practitioners to employ. Monte Carlo analysis of
these tests has shown the modified DF test of Elliott et al. (1996) to possess the greatest
power of all available unit root tests. The easily applied test of Elliott et al. (1996)
employs local-to-unity detrending via generalised least squares estimation to produce a
test with a local power function close to the local Gaussian power envelope. As a result
of its high power and incorporation in software packages, application of this test, denoted
as DF-GLS, has increased in recent years. Given the increasing popularity of the DF-
GLS test amongst practitioners, investigation of its properties warrants close attention.
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In this paper, the behaviour of the DF-GLS is examined in the presence of changes in
innovation variance under the null. The recent research of Kim et al. (2002) has shown
the DF test of Dickey and Fuller (1979) to suffer severe size distortion when applied to
unit root processes experiencing a sudden decrease in innovation variance, with the unit
root hypothesis spuriously rejected. However, while Cook (2002) and Cook (2003) have
analysed the properties of a number of modified unit root tests in these circumstances,
the properties of the DF-GLS test have not been considered in the literature to date. The
objective of this paper is to therefore examine the finite-sample size and power of the
DF-GLS test in the presence of decreases in innovation variance under theltnalll
therefore be examined how the DF-GLS performs and how this compares to previously
derived results for the DF test and the variance break robust test of Kim et al. (2002).

2 Unit Root Testing in the Presence of Variance Breaks

2.1 Unit Root Tests

The behaviour of the DF, test when applied to unit root processes subject to a sudden
decrease in innovation variance is examined in Kim et al. (2802)e DF7,, test is given
as thet-ratio for ¢ in the following regression:

Ay, = p+ pyi—1 + & . (1)

To improve upon the known low power of the DF test, Elliott et al. (1996) proposes
local-to-unity detrending using generalized least squares. This increased power is exam-
ined in Burridge and Taylor (2000), with results presented which show it results from
the distribution of the DF-GLS test shifting further towards the origin under the null than
under the alternative, in comparison to the DF test. Following the notation of Ng and Per-
ron (2001), the DF-GLS equivalent of thg test is derived as follows. Given any series
{x},, we define(z§, z&) = (zo, (1 — al)zy), t = 1,...,T wherea = 1 +¢/T. The
revised, GLS-detrended version@f denoted ag;, is then

Ut =Y — QZIZM

wherez; denotes the deterministic terms employed. In this case, with an intercept only
consideredz;, = 1. The estimator is given as the value minimising(«, v) = (y* —
@Z’z“)’(ya —&’za). For the intercept only model, the valae- —7 is selected to ensure the
limiting power function lies close to the local power envelope. With the locally detrended
seriesy; calculated, the DF-GLS test is thaatio of 5, in the regression

Ay = BoYi—1 + & (2)

To illustrate the empirical relevance of such breaks in variance, Aggarwal et al. (1999) employ the
Iterative Cumulative Sums of Squares (ICSS) algorithm of Inclan and Tiao (1994) to demonstrate that large
changes in the innovation variance have recently occured in emerging stock markets.

2In Kim et al. (2002) it is shown that the size of the DF test is distorted bgaeasén innovation
variance, but not aimcrease As this property is found to hold for the DF-GLS test also, only decreases in
innovation variance are considered.
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with the resulting test statistic can be denoted,%%g. The appeal of this easily applied

test to practitioners is obvious given its known increased power to reject the unit root hy-
pothesis in the standard case of i.i.d. errors (see Elliott et al., 1996 for a power comparison
of ther, and75"* tests).

However, while therfLS test has not been examined in the presence of variance
breaks, the properties of other (lower powered) modified tests have been considered in
these circumstances. Although not considered explicitly in the present study, these modi-
fied tests are referred to later in terms of their properties in the presence variance breaks,
and so are described here. The three tests considered are the weighted symmetric DF test
of Park and Fuller (1995), the maximum DF test of Leybourne (1995) and the recursively
mean adjusted test of Shin and So (2001). The weighted symmetric DF test of Park and
Fuller (1995) results from the application of a double length regression, with the weighted
symmetric estimator of the autoregressive parameter, denotegd agiven as the value
minimising

Qus(p) = Zwt(yt - PZ/t—l)z + Z(l —we) (Y — Pyt+1)2 ; 3)

wherew; = (¢t — 1)/T. The unit root hypothesis is then tested using via the statigtic
T-1 T 1/2

= o -0 (ST R) @

whereo? = (T — 2) ' Qus(Puws)-

A further modified DF test proposed to increase power to reject the unit root hypoth-
esis is the maximum DF test of Leybourne (1995). This test requires joint application of
forward and reverse regressions. Given a series of int¢yest ,, the DF test of Ley-
bourne (1995) is applied to bothy, } and{y;}, wherez, = y}._, fort =0,...,T. The
maximum DF test, denoted ag**, is then simply the maximum (less negative) of the
two test statistics obtained.

A final modified test previously considered is the recursively mean-adjusted DF test of
Shin and So (2001). As Shin and So (2001) note, the use of mean-adjusted observations
(y: —y) in the following regression results in correlation between the regrégsqr— 7)
and the errofe;)

Y=g =71 —7) te. (5)
The resulting bias of the ordinary least squares estimahtais been calculated by Shaman
and Stine (1988) and by Tanaka (1984) as

E(y —7) =T (1+3p) +o(T™"). (6)

To overcome the problems associated with this correlation, Shin and So (2001) propose
the use of recursively mean-adjusted observations, with the recursivefpeaalculated
as

t
Yy = ! Z Yi - (7)
i=1

The recursively mean-adjusted DF test, denoted] @sis then given as thetest ofy = 1
in the following regression

Yt — Ypo1 = V(W—1 — Yp_y) + & - (8)
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2.2 Monte Carlo Design

To examine the properties of andrfLS in the presence of breaks in innovation variance,
the following data generation process (DGP) is employed for the Monte Carlo simulation
analysis

yt:pyt—1+€t tzlayT (9)

Et = Ot (10)

e~ N(0,1) (11)
. o1 fort < Tg

9 = { oo fort > Tgy (12)

whereTs represents the breakpoint after which an abrupt change in the innovation vari-
ance occurs. The innovation serigg} is generated using pseudo {0, 1) random
numbers from the RNDNS procedure in the GAUSS, with the initial valye set equal

to zero. All experiments are performed over 10,000 replications using a sample size of
T = 100, with a further initial 100 observations created and discarded.

Following Kim et al. (2002), the break ratib = 0,/0; is assigned the values €
{0.25,0.4,0.6,0.8}. However, in contrast to Kim et al. (2002), results are presented for
all possible breakpoint§)s € {1,2,...,99}, rather than a limited number of points. To
analyse thesizgproperties ofr, andrfLS, p = 1 is imposed in the DGP given by (3)-

(6), while powelis examined by imposing = 0.9. Empirical rejection frequencies are
calculated at the 5% level of significance using the critical values of Ng and Perron (2001)
and Fuller (1996) for, and7$""* respectively.

2.3 Monte Carlo Results

To ease interpretation, the results derived using the above experimental design are de-
picted graphically, withr,, and 75" denoted as DF and DF-GLS respectively, and the
size of the break considered reported in parentheses. In Figure 1 the empirical sizes of the
tests are reported for the larger variance brgaks: 0.25,0.4). The known severe size
distortion of 7, is apparent for both break sizes, particularly for breaks occurring in the
early part of the sample. For the larger br¢ak= 0.25) the empirical size of, reaches

a maximum value of 41.35% when the break occur$mt= 13, while foré = 04 a
maximum rejection frequency of 23.88% is recordedfar = 14. While distortion is
maximized at these particular breakpoints, it is also apparent for breaks occurring at all
other points, apart from the final few observations. In contnﬁs‘t? exhibits far less size
distortion, with the maximum empirical sizes of 10.32% and 7.46% obtained+$o0.25

and0.4. Note that this distortion for early breaks disappears when the break is imposed
later in the sample. In Figure 2, the empirical sizes of the tests are presented for the two
smaller breakg$s = 0.6, 0.8). It can be seen that, still exhibits size distortion for early
breaks, although this is now much reduced, the maximum rejection frequencies being
12.23% and 7.42% fof = 0.6 and 0.8 respectively. For these smaller breaks there is
little evidence of size distortion for"*, wherever the break is imposed, the maximum
rejection frequencies being 5.76% and 5.18%fer 0.6 and 0.8 respectively.
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Figure 1: Size of, and7 (" tests § = 0.25,0.4).
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Power calculations for the two tests are presented in Figures 3 and 4. The results
for the larger breaks in Figure 3 show the powerrpto be inflated by the previously
noted size distortion for breaks early in the sample, while the known high powi6f
is reduced in the presence of early variance breaks. As expected, these characteristics
are less noticeable far = 0.4 thané = 0.25. However, as the timing of the break is
delayed, the powers of the tests approach the levels noted previously in the literature for
the no-break case, with’"* substantially more powerful thar,. For the larger breaks
of 0 = 0.6 and 0.8 depicted in Figure 4, it is clear that variance breaks have little impact
upon the tests, apart perhaps fg’rw when a break o = 0.6 is imposed early in the
sample.

Considering the results for size and powerjoint&,LS is far more robust to breaks in
innovation variance thar,. In contrast tar,,, there is little evidence af_’"* experiencing
size distortion, except for very large breaks occurring early in the sample period. It should
be noted that the valuk= 0.25 which results in size distortion fari"* over a range of
breakpoints is particularly extreme, corresponding to the innovation variance decreasing
by a factor of 16. Similarly, the impact of innovation variance breaks upon the power of
TELS is apparent for only a subset of the experiments considered, these again being where
a very large break occurs early in the sample period.

2.4 A Comparison with the Variance Robust Test

The above results show th§L5 test to be relatively robust in the presence of breaks in
innovation variance. To consider how the test compares to the variance robyst text

Kim et al. (2002), Tables 1 and 2 present the size and power calculations fﬁfltﬁe

7, andtp tests across a range of breakpoints and breaks sizes. Following the tabulated
results of Kim et al. (2002), break sizes®f {0.25,0.4,0.6,0.8} are considered at the
breakpointsT’s = {20,40,60,80}. As might be expected, the results in Table 1 show
that thet - test has the best size properties in the presence of the largest break in variance
considered. However, for more moderate breaksfﬁfé test actually outperforms the
asymptotically justified test. Considering the power results presented in Table 2, it
can be seen that the power of thg"® test exceeds that of the: test in virtually all

cases considered. It can therefore be argued that in many circumstancg’é%haay

be preferred to the test in the presence of breaks in variance, unless the breaks are
extremely largéo = 0.25).

3 Conclusion

In this letter the properties of the GLS-based Dickey-Fuller test of have been examined
in the presence of breaks in innovation variance. In contrast to the Dickey-Fuller test

which can exhibit severe size distortion when applied to a unit root process experiencing
a sudden decrease in innovation variance, the size of the DF-GLS test is found to be
substantially more robust. Additionally, the results of power calculations show the DF-

GLS test to only experience reduced power when very large breaks in variance occur early
in the sample period. For more moderate and realistic break sizes, the properties of the
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Table 1: Empirical sizes of thef"%, 7, andt tests(T" = 100).

5
Ts 0.80 0.60 0.40 0.25
20 7, 7.3 119 234 397
9k 49 51 67 103
" 6.1 68 63 63
40 7, 6.7 102 16.7 239
¢S 50 56 73 94
" 54 52 55 54
60 7, 6.1 80 110 133
TokS 50 57 65 7.4
" 47 47 55 56
80 7, 54 6.0 68 74
TokS 49 52 57 57
T 45 43 50 53

Entries in bold indicate the test statistic with an empirical
size closest to the nominal level of 5% for the combination
of break size and breakpoint considered.

Table 2: Empirical power of the®"*, 7, andt tests(T" = 100).

o

Tp 0.80 0.60 0.40 0.25

20 7, 350 38.6 449 50.4
7015 450 39.9 346 31.8
TP 267 27.9 340 465

40 7, 351 381 424 450
TGS 46.6 435 412 400
TP 243 249 280 387
60 7, 349 37.0 396 413
TS 483 470 46.2 457
TP 244 224 258 350
80 7, 348 360 376 386
79 499 50.0 502 50.4

I
TR 253 242 264 30.8

DF-GLS test are even superior to those of the variance robust test of Kim et al. (2002).
Given the extreme nature of the larger breaks considered here and by Kim et al. (2002),
perhaps more importance should be attached to these results for the more moderate breaks
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where the DF-GLS performs well. The observed robustness of the GLS test in these
circumstances, allied to its known high power in the absence of breaks, further emphasizes
its value to practitioners. A comparison with the findings of Cook (2003) shows the easily
applied GLS test to have similar properties to the recursively mean-adjusted test of Shin
and So (2001), but outperform the weighted symmetric test of Park and Fuller (1995). A
further comparison with the results of Cook (2002), shows the DF-GLS test to outperform
the maximum DF test of Leybourne (1995) in the presence of various breaks. The appeal
of the GLS test is further emphasised as unlike the recursively mean-adjusted test, its
specification can be extended to include a deterministic trend.
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