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Abstract: Statistics defines itself as a methodological discipline providing a 
rigorous, formal framework for scientific empirism based on a mapping of 
contingent observable phenomena to (real) numbers that can be dealt with, 
or analysed, computationally. Application of the statistical methodology of 
data reduction, in turn, requires some representation of the problem context. 
Most of the time, this amounts to encoding (a part of) the problem context 
of observation data into another layer of data – called metadata. Based on 
metadata, procedures of data analysis might be enhanced to encompass also 
the analysis and transformation of metadata alongside the accompanied data 
itself. The paper sketches the outline of a systematic approach to statistical 
“meta-computing” as a dual-mode proposal of statistical data processing. 
 
Zusammenfassung: Statistik kann als eine methodische Disziplin definiert 
werden, die eine formal rigorose Grundlage der wissenschaftlichen Empirie 
anstrebt, indem sie kontingente beobachtbare Phänomene auf (reelle) Zahlen 
abbildet, die sodann im rechnenden Sinne weiterverarbeitet bzw. analysiert 
werden. Die Anwendung der statistischen Methodik zur Datenreduktion 
erfordert ihrerseits eine Repräsentation des jeweiligen Anwendungs-
problems. Praktisch läuft dies dann in der Regel meist darauf hinaus, den die 
Daten beschreibenden Beobachtungskontext zumindest teilweise selber in 
Form von Daten – sogenannten Metadaten – abzubilden. Auf diesen 
Metadaten aufbauend lassen sich nun die Verfahren der Datenanalyse so 
erweitern, dass sie auch die Analyse und Transformation der Metadaten – 
zusammen mit den zugrundeliegenden Daten selbst – einbeziehen. Dieser 
Beitrag skizziert die Umrisse eines systematischen Ansatzes zu einem 
statistischen „Meta-Computing“ in Form eines Vorschlags zu einer solchen 
dualen statistischen Daten/Metadaten-Verarbeitung. 
 
Keywords: statistical metadata, metadata management, statistical data 
processing, data and metadata integration. 

1  Introduction and Background 

In general, ‘data integration’ is considered a preparatory procedure to merge two or 
more datasets into one larger, or augmented, dataset undergoing further analysis or 
processing (Wiederhold and Genesereth, 1997). Integration of data, though, is based on 
some underlying pairing or matching logic justifying the putting together of data of 
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different record sets so that the resulting, “integrated” dataset, in a sense, carries the 
joint information of its integrated predecessors. In the statistical context, accordingly, 
very often techniques useful in this respect are dubbed “record matching”, “data 
linking”, and the like (Winkler, 1995). To be legitimate, such kind of statistical data 
linkage typically presupposes that observation records strung together contain or pool 
variables (data elements) referring to some shared or, at least, compliant statistical unit 
and population, alongside possibly further criteria to be met. Naturally, the combination 
conditions depend on the specific subject-matter or information processing context 
whence, as a matter of fact, even in statistics the range of data integration modes 
happens to be variegated (Denk, 2002). The point here is that both feasibility and mode 
of data integration depend on information external to the data to become so integrated, 
as this is highlighted, for instance, in the DIECOFIS project (Inglese and Oropallo, 
2004). Thus, in addition to record matching, there is in fact another legitimate reason for 
data integration quite different in its intention and purpose from the one stated above: 
any reasonable processing of statistical data (viewed as symbol-coded statements about 
empirical reality) refers to information about this data, a good deal of which can itself 
be encoded as data. Generally, this kind of second-order data is termed metadata for 
some thirty years now (the term being used reportedly the first time by Sundgren as 
early as 1973).  

Given that metadata is indeed amenable to formal processing – based on structured 
representations of metadata – the notion of computing with metadata makes perfect 
sense. Quite naturally, this type of computing could be called “meta-computing”, as the 
objects of symbol transformation are not statistical observations any more but coded 
information about such statistical observations. An immanent feature of all higher-order 
information, informed processing of lower-order information relies on processing 
upper-order information first. So, except for trivial cases, “ordinary” data integration 
generally requires the preceding integration of respective metadata to enable meta-
computed decisions about subsequent data linkage. Yet, the real virtues of meta-
computing depend on keeping data and metadata always integrated, calling for specific 
computational architectures tightly linking data and data descriptions (metadata) within 
all statistical transformations to make metadata available alongside the referred-to data 
throughout (Bethlehem et al., 1999). 

This contribution seeks to define statistical meta-computing mainly as a task of 
metadata integration and outlines a couple of design considerations towards the 
development of data/metadata-integrated statistical transformation systems. In so doing, 
it draws heavily on previous work, mostly carried out in a series of research projects 
with the participation of the Data Analysis and Computing unit (headed by Prof. 
Wilfried Grossmann) of the Dept. of Statistics, University of Vienna, from the late-
1980ies onwards. Thus, both methodology and proposed design elements of the 
proposed framework emanate from some 15 years of research work carried on, most of 
the time, in collaboration with research partners and (national) statistical institutes from 
all over Europe, including – among others – Paul Darius and Michel Boucneau 
(University of Leuven, Belgium), Gerda van den Berg (University of Leiden, 
Netherlands), Dennis Conniffe (Trinity College, Dublin, Ireland), Sally McClean and 
David Bell (University of Ulster), Haralambos Papageorgiou (University of Athens), 
Eric Schulte Nordholt (CBS, Netherlands), Joanne Lamb (University of Edinburgh), 
Hans-Joachim Lenz (FU Berlin, Germany), Jana Meliskova (UN/ECE, Geneva, 
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Switzerland), and ranging over projects such as “Automated Generation of Statistical 
Tables” (Austrian Office of the Chancellor; Grossmann and Froeschl, 1994), 
“Modelling Metadata” (IST FP3/DOSIS; Darius et al., 1993), “Integrated 
Documentation and Retrieval Environment for Statistical Aggregates (IDARESA)” (IST 
FP4/DOSES; Denk and Froeschl, 2000), a book on “Metadata Management in 
Statistical Information Processing” (Froeschl, 1997), a pilot re-implementation for the 
UNIDO Industrial Statistics Database (Froeschl et al., 2002), and the “MetaNet” 
Network of Excellence (IST FP5; Froeschl et al., 2003). 

In this paper, the exposition of ideas on statistical meta-computing is organised as 
follows. Section 2 juxtaposes the concepts of statistical computing and meta-computing, 
elucidates the virtues of metadata modelling, and presents a (preliminary) definition of 
meta-computing based on the analysis of an appropriate modelling abstraction. Next, 
Section 3 develops the operational framework for meta-computing with specifically 
designed object models integrating both data and metadata components, exemplifying 
the proposed operand structures in a general weighting context. For reasons of limited 
space, however, the presentation gives only a sketchy account of application. Section 4 
indicates how the outlined structure of statistical meta-computing could be extended to 
more comprehensive meta-information structures, giving a flavour of the meta-
information designs needed. Finally, Section 5 touches briefly the option of goal-driven 
statistical computing by means of metadata, and tentatively evaluates the potential of 
statistical meta-computing, given the present state of affairs. 

2  Definitions and Terminology 

Statistical computing, while primarily dealing algorithmically with numbers encoding 
empirical observation data, always relies on and is justified in terms of information 
about this observed (part of the) reality – as it is construed in the eyes of the observer or 
according to some theoretical consideration. This information about data – henceforth 
termed meta-information – comprises varied knowledge such as about 

• the coding of observations in so-called codebooks recording the mapping from 
observed phenomena to number scales or code systems; 

• the concepts and processes underlying or determining the actual measuring and 
data capturing activities (that is, how the mapping of observations to data takes 
place, for example, through a questionnaire); 

• the design of the data collecting schema, or sampling structure (that is, the choice 
and configuration of the entities actually observed) as well as 

• various subject-matter considerations providing the motivation for actually 
carrying out the whole empirical process, its reason and conceptual framing. 

Correspondingly, any sound empirical reasoning has to rely on such kinds of “situation-
dependent” statistical meta-information. Moreover, statistical data carry statistical 
information only so long as they can be interpreted in the light of this surrounding meta-
information; hence, the ultimate purpose of meta-information is to provide, or maintain, 
the semantics of the context the data originates from. 
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In addition to this situation-dependent context information, statistics as a 
methodology proceeds in a structured way to analyse statistical data. Statistics, as a 
practical method of empirical reasoning, rests on various foundations including 

• first of all, statistical theory, and, corresponding to this, a specific terminology 
comprising the salient notions and discernments supporting theory development;  

• data management methodology – for organising the storage of both observation 
data and descriptive data context – and (numerical) computational principles and 
algorithms – for algebraic data transformation;  

• familiarity with the subject-matter issues the formal methodology of statistics 
becomes applied to (that is, about what is actually encoded in statistical data);  

• a toolbox of modelling techniques – so-called “applied statistics” – helping to fit 
formal explanation structures to the data captured.  

From a theoretical perspective, statistical methodology seeks to abstract from individual 
empirical investigations in order to sift out, depending on stereotypical constellations, 
generalised schemata of empirical reasoning (Box, 1976). For such constellations (for 
example, linear models, or time series models), a canonical methodology is developed 
grounded on the fundamental concepts of the discipline (such as axiomatic probability 
theory, maximum likelihood principle, distributional assumptions, etc.), and equipped 
with normative status. In practice, of course, these recipes happen to be softened, not in 
their formal conduct but as to their theoretical conditions of admission, to remain 
applicable in a wider range of subject domains. 

Clearly, a sufficient formalisation of methodology is an indispensable precondition 
for any serious attempt at statistical meta-computing. However, traditional methodology 
of statistical estimation and inference predominantly focused on what might be called 
“intra-inferential aspects of methodology” in that, in general at least, it dealt with one 
(statistical) function applied to a dataset at a time, and scrutinised the mathematico-
statistical properties of this function in a rather abstract way. Typically, this amounts to 
prescribing the various conditions to hold for the function‘s arguments, viz. the dataset 
(or “sample”), to make the claimed statements about the function – such as 
unbiasedness, sufficiency, … – valid. Of course, also numerical issues (accuracy, 
stability, …) are extensively dealt with in this respect. 

Compared to that, in mathematical statistics seemingly less emphasis has been laid 
on the development of “coherent macro-strategies”, that is, the methodology of deriving 
consistent – or, at least, coherent in some meaningful way – sets of summaries or 
conclusions from a body of related observation data. In this respect, attitudes began to 
change in the (late) 1970ies, notably propelled through the immensely influential work 
of Tukey (1977) but certainly also supported by the improved capabilities of computing 
machinery placing more and more computing power and data management facilities on 
a statistician’s desk. A further stimulus was triggered by the then rising popularity of 
Artificial Intelligence-based so-called expert systems – in the 1980ies several such 
statistical expert systems aiming to encode the analytical tactics of applied statisticians 
were proposed (Haag, 1994). Although, meanwhile, the interest in expert system 
technology has declined for several reasons (Streitberg, 1988), this is nevertheless to say 
that, more recently, attention seems to have shifted towards more processing-oriented 
aspects of statistics, or “extra-inferential aspects of methodology” – whether particular 
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statistical functions could be applied legitimately under varying practical conditions 
(with, correspondingly, a tangible focus on robust and non-parametric methods as well 
as the management of errors of the third kind; cf. Kimball, 1957). 

In addition to the indicated changes in focus on methodology in statistics, also an 
emerging preponderance of data is noticeable from the 1980ies onwards – the former 
method-centric approach now became somewhat overshadowed by a focus on data. This 
data-centric turn benefited from a lasting change in data provenance, with a growing 
abundance of available data, compared to the traditional data scarcity most of empirical 
work used to struggle with. Thanks to decreasing storage costs, the incredibly swelling 
waves of electronically captured or even “digitally borne” data (much of which non-
observational, by the way) are gathered over long time periods in huge statistical 
repositories; with the advent of the Internet data has additionally gained an 
unprecedented mobility and become easily accessible even on a global scale (Ryssevik, 
2002). At the same time, data structures are becoming more and more complex. Little 
surprise, then, that data turns into a new resource of its own, seeing data-centric 
statistics (also known as “data mining” techniques; cf. Han and Kamber, 2001, or 
Fayyad et al., 1996) receiving tremendous importance, and the role of data 
documentation getting sharply elevated, as data is increasingly available for use outside 
its originating context. 

A strategic response to these changes and developments – based on the heritage of 
data description approaches and requirements that evolved from the former attempts 
towards building statistical expert systems – consists in advancing the methodology of 
data documentation. Without any pretensions to truly codify any (procedural, heuristic, 
etc.) knowledge of statistical analysis, it is reasonable to assume that a standardised set 
of universally relevant data-descriptive elements can be inferred by way of abstraction 
and theoretical argument. This approach towards formal documentation aims at the 
systematic capture of (non-observational) higher-order data, called metadata, and seeks 
to establish a sustained linkage of data with the metadata describing it. Clearly, 
“metadata” is a term with relative meaning: by definition, metadata is data as well, and 
so it is always conceivable to establish metadata for data of whatever order (thus, the 
“metadata” of some data’s metadata is its “meta-metadata”, and so on). Thinking of 
metadata in terms of (otherwise ordinary) data, however, highlights an often overlooked 
feature: as data, metadata is amenable to a schema-compliant representation (that is, it 
meets the structural requirements such as those of database schemata) and, furthermore, 
metadata become well-defined symbolic objects to formally operate with – although, 
apparently, meaning and structure of computation is different from computing with 
usual statistics data. At any rate, though, considering data and related metadata as a 
tightly integrated “tandem” structure (Darius et al., 1993) is paving the way towards a 
metadata-controlled mode of data transformation bringing into reach benefits such as 

• the preservation of documentation integrity through always concordantly co-
transforming both data and data description;  

• the automated verification of the (formal) preconditions of an operation to be 
applied to statistical data by matching these preconditions against operand 
metadata;  
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• the assurance of self-consistent statistical processing sequences as, even in “out-
of-context” processing, at least a minimum of origin context is preserved by 
metadata.  

Actually, the idea of metadata-controlled computing is by no means radically new: most 
familiar statistical packages use internal data descriptions to organise “local” data 
processing but – and this makes a significant difference – metadata is generally not 
accessible from outside. In order to fully exploit the potential of metadata, statistical 
data processing environments have to be thoroughly re-engineered such that metadata 
stays seamlessly linked to the data proper, regardless of all the transformation it 
undergoes, throughout its whole lifetime, and beyond any single system’s boundaries. 
This way, conversely, metadata modelling becomes a prerequisite to effective 
interoperable – and, hence, “metadata-mediated” – statistical data processing systems 
utilising devolved, distributed, or federated data resources (Denk and Froeschl, 2000). 
In drawing together, in the present context, metadata means the formalised share of data 
context mapping data semantics to (syntactic) information structures; correspondingly, 
meta-computing refers to the application of algorithmic (symbol) transformations to 
metadata, in complete analogy to computing referring to the application of symbol 
transformations to (numerical, in general) data. In particular, statistical meta-computing 
denotes that kind of meta-computing using dual, self-describing computation structures 
encompassing both statistical data and metadata components such that all data is 
“wrapped up” in metadata. 

Now, demanding that all data must be wrapped up in its own metadata sounds like 
begging the question: where to stop appropriately with all the wrapping before cycling 
infinitely? 

2.1  Meta-Information Modelling 

Any modelling (of information) starts with the definition of a language to express ideas. 
Given the ambition of universally describing empirical discourses – the formal 
negotiation of models of an outer reality – by means of a (semi-) formal language, the 
task of determining a suitable language amounts to abstract bottom-up from “discourse 
instances” until a stable, self-sufficient set of universal empirical discourse notions is 
attained the first time. This search process can be visualised very well using Del 
Vecchio’s model pyramid (cf. Froeschl et al., 2003) comprising altogether four 
modelling levels on top of a ground “reality” level: 

• L4: methods that define methods (meta-metamodels)  

• L3: methods for the making of definitions (meta-models)  

• L2: definitions (models of the data)  

• L1: extensions (data)  

• L0: “reality”  

In this hierarchy, L1 denotes the level of direct symbol representation (terms, codes) of 
“real” contingencies whereas L2 signifies the level regulating the semantics of L1-
designations. Apparently, in so doing, L2 structures conform to some language 
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convention, viz. an L3 schema, or “meta-model” providing these language definitions. 
As a typical example, the ISO/IEC 11179 (“specification and standardization of data 
elements”) standard might be considered: while the standard provides a description 
methodology at L3 in terms of so-called ‘data elements’, data element descriptions is L2 
data. In turn, the meta-model language is expressed and communicated using a yet 
higher-level specification language, at L4. Fortunately, L4 happens to be self-
encompassing (provided a very powerful language is used, as assumed here), so the 
hierarchy happily remains finite. 

Given the generality of L4 modelling and the domain specificity of L2 models, L3 
turns out to be the appropriate level of formalising models of data description, that is, 
providing the information structures and concepts invariant with respect to individual 
applications. In other words, L3 notions and relational structures provide the appropriate 
means of expression for general statistical domain modelling and, thus, provides the 
terminology and formal constructs of statistical meta-computing. Dropping L0 und 
using a more familiar statistical terminology, Tab. 1 (simplified from Froeschl et al., 
2003) summarises the proposed names, intended content and envisaged “carrier” 
information structures for the respective model levels. 

 

Table 1: Statistical Meta-Information Modelling Hierarchy 
 

Level Name Content Carrier 

1 instance data individual 
2 domain data schema collective 
3 application model domain schema category 
4 meta-model model schema class 

 

L3 modelling, then, consists in singling out a parsimonious, clear-cut set of fundamental 
statistical discourse notions (or types), for which the designation “metadata categories” 
is proposed, simply because it is the modelling hypothesis that any discernible entity 
occurring in an empirical discourse belongs to exactly one of these categories. In other 
words, L3 language is based on a taxonomy of discourse objects, classifying objects 
into categories, and determining the internal structures (type description for each 
category) and relationships between categories, or, more specifically, instances of 
categories. Moreover, L3 is also the layer for defining a set of elementary operations for 
transforming (representations of) category instances according to the semantics of 
statistical operations. 

As an example, Fig. 1 (reproduced from Froeschl et al., 2003) illustrates an excerpt 
of L3 structures, focusing on the metadata category of ‘dataset’ and its immediate model 
neighbourhood. Note that the graphic presentation of the model excerpt uses, though 
without explicit mention, L4 language. Note further that both shown metadata 
categories and relationships between them hold generically and inherit automatically to 
all individual category instances. 
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Figure 1: Sample L3 Structure Model 

 
Using L3 structure elements, application (L2) models can be built such that problem 

context of empirical discourses is captured in terms of metadata categories and category 
interrelations independent of any particular application context. 

2.2  Statistical Meta-Information Structures 

Quite obviously, L3 formalisation still leaves open various choices. The main guiding 
principle adopted here consists in a formalisation supporting both structural context 
description and transformation dynamics. Aiming at a formal representation of the 
meta-empirical (L3) discourse comprising well-defined computable operands with neat 
algebraic properties throughout, the proposal cuts the set of core constructs – called 
meta-information dimensions – to only three of them, viz. 

• population structures (P) comprising the statistical units and collectives 
undergoing observation/measurement; 

• measurement (observation) structures (V) encompassing the observed phenomena 
(“variables”), and 

• value structures (P×V) capturing the observational design (incl. sampling 
structure). 

Not by mere incidence, these dimensions mirror the elementary set-up of probabilistic 
experiments with a random variate (V), its domain component (P), and – typically for 
some random sample drawn – a materialised outcome of the experiment, or value, 
within an event space induced by P×V. From a meta-information perspective, however, 
there are different implementation layers for metadata discernible, at least indicating a 
distinction between a ‘conceptual’ and an ‘operational’ layer as shown in Tab. 2 
(modified from Froeschl et al., 2003). This “3-by-3 meta-information breakdown” 
highlights a marked asymmetry between data and metadata: while meta-information 
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gives rise to metadata on all implementation layers, data is present usually only on the 
material layer (notably, in terms of datasets) and, partly, on the operational layer (for 
instance, extensional representations of: population registers, code systems of 
hierarchical classification systems, questionnaires). Clearly, as the conceptual layer 
concerns data intensions (mostly in terms of non-formal definitions) only, this layer 
covers metadata exclusively. To explain briefly, ‘statistical unit’ refers to a type of 
carrier of ‘statistical characteristics’ (that is, an observable feature of an observed 
individual) whereas a ‘data source’ frames the observational setting (including the 
sampling scheme, factorial design, etc.). 

 

Table 2: Statistical 3-by-3 Meta-Information Breakdown 

 Implementation layer 

Dimension conceptual operational material 

P statistical unit statistical 
population 

case(s) 

V statistical 
characteristic 

codomain 
(value range) 

observation(s) 

P × V data source event space dataset 
 
 

As to transformation dynamics, all P, V, and P×V elements qualify equally as 
operands (Denk et al., 2002). This establishes two views on statistical meta-computing, 
viz. 

• a structural (representational) view, focusing on information structures and 
information structure transformations, and 

• an operational (state-transitional) view, comprising inputs (sources), algebraic/ 
numerical operation(s), and outputs (for presentation/storage/transfer).  

Structurally, operands are composed, in general, of (i) statistics data proper (that is, 
“first order” observation data), (ii) companion data (such as paradata and peridata; cf. 
Froeschl et al., 2003: ‘paradata’ – a notion introduced by Fritz Scheuren (2000) – is a 
special category of still by nature observational data accounting for salient features of 
taking observations/measurements; ‘peridata’ – an artificial notion indeed – refers to 
structural and numerical non-observational quantitative information describing the 
observation set-up in terms of sampling fractions, non-response rates, etc.), (iii) context 
linkage (reference data embedding operands into a broader transformation context; cf. 
Section 4), and (iv) content data (providing structural operand self-description; cf. 
Section 3). Transformation structure separates into operand derivation (how it is 
obtained) and operand lineage (where it comes from). In the operational view, operands 
are divided into several types (algebraic sorts) comprising, among others, statistical 
datasets, matrices, tables, time series, etc. each sort bearing, of course, specific 
operations. These, in turn, may affect either the data itself or transform data structures 
(schema transformations). Finally, operators divide into elementary (primitive) 
operators and compound operators (that is, expressions of nested operations). 
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The main technical implication of always keeping together data and its description is 
a compound operand representation stacking, if need be, several data/metadata-level 
pairs as shown in Fig. 2a (modified from Denk, 1999). In particular, because part of an 
operand’s metadata is the schema for the data contained, transformation management 
generally amounts to a stepwise level unfolding procedure: before a data component of 
an operand can be written, its structure (schema) must be established first by another 
operation at the metadata level. In fact, there is no cogent reason to transform data and 
metadata levels synchronously; rather, it is often even advantageous to string together 
metadata transformations τ’i on metadata operands d’j and determine their compound 
effect (τ’1°τ’2(d’1,d’2) = τ’2(τ’1(d’1,d’2)) in example Fig. 2b) before data components are 
filled in. 

 

Figure 2a: Stacked Operand Levels 

 

 

Figure 2b: Level-locked Operators Lined Up 
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Apparently, the management of compound operands introduces a considerable 
overhead in structure administration, mainly because (even) elementary transformations 
affect, in general, several schema/data-level pairs. As a consequence, most (statistical) 
operations become complex event-condition-action rules for changing both operand 
state and structure (schema). However, this is compensated by conducting all 
transformations “in-context”, that is, by maintaining all explicit context linkages even 
for operands changed or newly created as output of an operation. 

3  A Design for Operand Structures 

This section presents a proposal for a transformation-invariant meta-computing operand 
structure such that (i) all operations can be stated as operators of a calculus over a 
many-sorted algebra, and (ii) all statistical computing can be expressed as a sequence of 
stepwise schema/data updates preserving structural consistency of the operand and 
context network. To focus the presentation and for limits of space, however, only 
datasets (cf. Tab. 2) are considered as operand specimen. The ensuing foundational 
structure is first explicated structurally and then exemplified in a simple weighting 
context (cf. Denk et al., 2002). 

3.1  Statistical Composites 

Statistical composites as a data structure are built out of a few basic elements as shown 
in Fig. 3. Essentially, each statistical composite (SCo, henceforth) consists of a 
container directory as its “top level” registry listing all SCo components (except the 
container directory itself), an attribute directory gathering all “attributes” used in the 
SCo, and a variable number of so-called bucket schemata and buckets, respectively. In 
spite of this flexibility, the basic building blocks may still conform to conventional 
relational (or tabular) structures. Dashed arrows in Fig. 3 indicate the metadata/data 
dependencies established: attributes describe content used in bucket schemata; bucket 
schemata describe bucket structures. 

 

 

Figure 3: Skeleton SCo Structure (from Denk et al., 2002) 

 

statistical
composite

container 
directory 

attributes
  directory bucket 

schema * bucket *
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Buckets, as a generic tabular container structure, come in two formats and subdivide 
into different classes. First, there is a ‘case’ format good for storing standard 
observation (that is, “case-by-variate”) matrices, and a ‘summary’ format representing 
generalised, multi-dimensional statistical tables. Regardless of the format, the following 
bucket classes are distinguished: 

• data: buckets for storing statistics data as well as paradata (Scheuren, 2000) 
where the latter refers to a special kind of microdata assuming a bivalent role of 
either a regular observable or a variable encoding mode information about the 
observation (such as the number of trials to successfully contact a respondent in a 
telephone interview); 

• sampling and weighting: buckets storing information about the sampling scheme 
and data grossing-up, respectively; 

• method: buckets to store estimates or model parameters typically obtained as 
output of statistical procedures;  

• annotation: buckets for gathering comments and footnotes (Silver, 1993; Froeschl 
et al. 2002).  

Buckets are composed of attributes that might be defined either for use within a specific 
bucket (‘bucket’ level attributes), for use within an individual SCo (‘composite’ level 
attributes), or used to link a SCo to its outside context (‘context’ level attributes). 
Moreover, (bucket) attributes are classified into ‘data’ attributes (C=categorical, 
Q=quantitative, K=key, …), ‘summary’ (S), ‘weight’ (W), and ‘method’ (M) attributes. 

Fig. 4 illustrates the type definition of SCo using a language of semi-structured data 
(Abiteboul et al., 2000); the question mark denotes an optional attribute, reserved 
keywords are typeset in italics, an ampersand (‘&’) prefix signals a reference to an 
instance of the indicated type. A (fictitious) instance of this defined type of SCo is 
‘SCO-2’ shown in Fig. 5; this composite encodes a case-level micro-dataset in use 
within some transformation stage. ‘&PCO-4’, ‘&PCO-6’, and ‘&SRC-1’, respectively, 
refer to external instances of types ‘POPULATIONCOMPOSITE’ and ‘SOURCE’. 

 
 

 
type STATISTICALCOMPOSITE = 
 { 
  (Label : string) ?, 
  (Description : string) ?, 
  Origin : source | derived, 
  Context : input | transformation | output, 
  Format : b_format, 
  ProcessingLevel : raw | micro | macro | adjusted | …, 
  Components : CONTAINERDIRECTORY, 
  StatisticalPopulation : &POPULATION | &POPULATIONCOMPOSITE, 
  SamplingPopulation : &POPULATIONCOMPOSITE, 
  GeneratedBy : &SOURCE | &TRANSFORMATIONSTEP  
 } 

Figure 4: SCo Type Definition 
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{ 
  Label : “Example composite”, 
  Origin : source, 
  Context : transformation, 
  Format : case, 
  ProcessingLevel : micro, 
  Components : CDIR2, 
  StatisticalPopulation : &PCO-4, 
  SamplingPopulation : &PCO-6, 
  GeneratedBy : &SRC-1  
 } 

Figure 5: SCo Instance 

 
The container directory ‘CDIR2’ is actually a nested sub-structure (dependent 

component) of SCo instance ‘SCO-2’ separated from the SCo here for presentation 
purposes, and might look like shown in Fig. 6. 
 

 
{ 
  Attributes : ADIR2, 
  Contains :  

Class Schema Bucket 
data &SCH-1 &B-3 
sampling &SCH-3 &B-7 

 } 

Figure 6: Nested SCo Container Directory 

 
 
{ 
  Contains :  

ID Class Role CorrespTo 
SCOATT1 C strat &ATT-17 
SCOATT2 Q obs &ATT-8 
 Μ Μ  Μ  Μ 
SCOATT8 U sel_prob &ATT-12 
SCOATT9 Q strat_size &ATT-15 

 } 

Figure 7: Nested SCo Attributes Directory (Excerpt) 

 
The attributes directory ‘ADIR2’ of ‘SCO-2’ is again a nested sub-structure listing 

all the attributes used in the SCo. The running example is continued in Fig. 7. The ‘role’ 
column specifies the formal meaning of the respective attribute (that is, the variable 
stated in the ‘CorrespTo’ column) within the SCo; for example, ‘strat’ declares 
‘SCOATT1’ as a stratification variable whereas ‘sel_prob’ indicates that ‘SCOATT8’ 
provides the case selection probabilities used for random sampling. 
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{ 
  Format : case, 
  Class : data,  
  Contains :  

ID CorrespTo 
BATT1 SCOATT1 
BATT2 SCOATT2 
 Μ  Μ 

 } 

Figure 8: Example Data Bucket Schema (Excerpt) 

 
 
{ 
  Schema : &SCH-1, 
  Contains :  

BATT1 BATT2 … 
F 35210 …  
F 14700 …  
M 53890 … 
 Μ  Μ  Μ 

 } 

Figure 9: Example Data Bucket (Excerpt) 

 
Schemata for both container and attributes directories are, by definition, constant. 

For each bucket, however, its schema has to be declared separately by listing all bucket 
attributes and identifying these with the respective composite attributes, as shown in 
Fig. 8 for ‘&SCH-1’. 

Using the defined schema ‘&SCH-1’, bucket ‘B-3’ eventually provides the content 
of the data matrix as indicated in Fig. 9. Note that observations are actually stratified 
according to variable ‘ATT-17’, and ‘ATT-8’ is one of the dataset’s observables 
accessible through ‘BATT2’ (both defined elsewhere outside composite ‘SCO-2’). 

3.2  A Simple Weighting Example 

For the sake of illustration, this subsection sketches the practical use of SCo structures 
in a simple weighting application (Ofner, 2001). Generally, the calculation of weights 
for a statistical data sample depends on (i) the structure of the dataset (whether its 
format is ‘case’ or ‘summary’), (ii) the type of additional information available (for 
example, sample sizes, stratification variables, etc.), and (iii) the method of weighting 
(for example, using base weights, or calibration weights to compensate for non-
sampling errors, etc.). Clearly, the analytical target of weighting guides the choice of a 
weighting method, usually selected by the analyst. If the target is adjustment of data to 
the sampling process, base weights will be used, whereas for adjustments to the 
population structure a kind of calibration applies. The feasibility of a particular 
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weighting method as well as details of the computational procedure are determined by 
both, the input SCo (including its component data) and additional user data (such as 
method parameters), if any. The ensuing transformation procedure consists of basically 
three stages, viz. (i) checking of method feasibility (accomplished mainly by inference 
on metadata), (ii) the computation of (new) component data, and (iii) the creation of a 
well-defined output SCo. 

The example scenario assumes the application of a standard Horvitz-Thompson 
estimator with weight multipliers ‘weight_base’ computed as 1 over ‘sel_prob’ (cf. Fig. 
7) using a ‘case’-format ‘data’ bucket (cf. Fig. 9) combined with a ‘summary’-format 
‘sampling’ bucket ‘B-3’ shown in Fig. 11; the bucket schema ‘SCH-3’ for this sampling 
bucket is exhibited in Fig. 10. 

 
 
{ 
  Format : summary, 
  Class : sampling,  
  Contains :  

ID CorrespTo 
BATT1 SCOATT1 
BATT2 SCOATT8 
BATT3 SCOATT9 

 } 

Figure 10: Example Sampling Bucket Schema 
 

 
{ 
  Schema : &SCH-3, 
  Contains :  

BATT1 BATT2 BATT3 
F 0.2 600 
M 0.5 800 

 } 

Figure 11: Example Sampling Bucket 

 
Linking back to the attributes directory, the columns of the sampling bucket ‘B-3’ 

refer to, in this ordering, the stratification variable ‘SCOATT1’ (sex, in this case), 
‘SCOATT8’ (sel_prob), and ‘SCOATT9’ (strat_size). Obviously, the Horvitz-
Thompson estimator based weighting method (using inclusion instead of selection 
probabilities for grossing-up) applies because the sampling bucket provides the required 
weighting factors appropriately stratified (namely, by the same variable, ‘SCOATT1’). 
Hence, computation of base weights is fairly easy. A consistent update of the 
description network amounts to generating an output SCo structure through the 
following steps: 

• define a container directory (‘CDIR15’; cf. Fig. 12) by adapting the container 
directory of the input SCo through adding both a weighting bucket entry and its 
schema entry;  
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• accordingly, also the attributes directory (‘ADIR13’; cf. Fig. 13) is adapted by 
adding another composite attribute (‘SCOATT10’);  

• creating the new weighting bucket schema (‘SCH-11’; cf. Fig. 14), and 

• creating the new weighting bucket (‘B-14’; cf. Fig. 15) with the computed 
weights (‘BATT2’) inserted.  

In all figures below, the grey-shaded parts denote added or newly created entries. The 
resulting output SCo (‘SCO-3’) is exhibited in Fig. 16. 

 
 

 
{ 
  Attributes : ADIR13, 
  Contains :  

Class Schema Bucket 
Data &SCH-1 &B-3 
Sampling &SCH-3 &B-7 
Weighting &SCH-11 &B-14 

 } 

Figure 12: Adapted Container Directory 

 
 
{ 
  Contains :  

ID Class Role CorrespTo 
SCOATT1 C strat &ATT-17 
 Μ Μ  Μ  Μ 
SCOATT8 U sel_prob &ATT-12 
SCOATT9 Q strat_size &ATT-15 
SCOATT10 Q weight_base &ATT-23 

 } 

Figure 13: Adapted Attributes Directory (Excerpt)  

 
While highlighting, to some degree, basic mechanisms underlying the sketched 

meta-computing principles, the example is incomplete as, in several places, references 
to objects outside of the considered SCos occur or are introduced during the 
computation (‘&ATT-23’, ‘&WT-1’) that, of course, all have to consistently refer to 
outside context structures establishing cross-SCo meaning assignments. 
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{ 
  Format : summary, 
  Class : weighting,  
  Contains :  

ID CorrespTo 
BATT1 SCOATT1 
BATT2 SCOATT10 

 } 

Figure 14: Example Weighting Bucket Schema 

 
 
{ 
  Schema : &SCH-11, 
  Contains :  

BATT1 BATT2 
F 5 
M 2 

 } 

Figure 15: Example Weighting Bucket 

 
 
{ 
  Label : “Example weighting composite”, 
  Origin : derived, 
  Context : transformation, 
  Format : case, 
  ProcessingLevel : micro, 
  Components : CDIR15, 
  StatisticalPopulation : &PCO-4, 
  SamplingPopulation : &PCO-6, 
  GeneratedBy : &WT-1 
 } 

Figure 16: Output SCo Instance 

4  Context Linkage 

By design, every SCo is embedded into a “surrounding” meta-information structure 
depending on the role and purpose of the respective SCo. As outlined in Subsection 2.2, 
this context is composed of (typed) structural elements interwoven in a referential net 
providing the denotations encoding (only part of) the semantics of embedded SCo 
components. Thus, for example, prior to any data processing the surrounding meta-
information structure of any SCo is a ‘source context’ defining, among other things, the 
statistical population the dataset of the SCo relates to, and the meaning of the variables 
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contained in the dataset (cf. Tab. 2). A source context, in turn, will be enclosed in a still 
broader information structure, the ‘domain context’ providing descriptions of a whole 
subject matter area (such as, say, employment or education statistics) which itself, 
again, may be embedded in a yet more general ‘institutional context’ comprising 
definitions or prescriptions of fundamental discourse elements such as standardised 
nomenclatures, statistical unit delineations, registries, and so on. 

Structurally, a SCo is but a sub-net deeply entangled into its context, raising the 
question of what to include in SCos and what to place outside in the surrounding 
context for reference by SCos. Generally speaking, SCo “interior” is determined 
pragmatically, that is, by computational considerations and requirements: whenever 
structural relationships of composition or association are – typically – affected by 
transformations within an otherwise unchanged surrounding network structure, these 
sets of “related bits and pieces” undergoing joint transformational reshaping legitimise 
SCo entities. Analogously, of course, the very same argument of structural organisation 
applies to the recursive formation of sub-contexts nested within (super-) contexts, as 
contexts by themselves are legitimate operands of (context) processing. 

For the sake of SCo processing, the model assumes that one or more (input) SCos 
are first moved from source contexts to a ‘transformation context’ maintaining a 
structural description of all entities relevant in the conduct of a specific data 
transformation. With respect to the weighting example of Section 3.2, Fig. 17 sketches 
how input SCo ‘SCO-2’ and output SCo ‘SCO-3’ might be formally related in such a 
transformation context. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Weighting Transformation Context (Excerpt) 
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Basically, in Fig. 17, input and output SCo are linked by references to (i) the same 
attributes (‘&ATT-x’) and populations (‘&PCO-x’), recorded in the respective directories 
within the transformation context, and (ii) another directory gathering the actual 
transformation(s) applied, such as object ‘&WT-1’ (not shown in Fig. 17) establishing 
the functional relationship between ‘&SCO-2’ and ‘&SCO-3’ by memorising the 
applied weighting operation and its parameters. Making extensive use of object 
referencing in structure composition, by the way, helps to save space in that most of the 
time only references are copied (“shallow copies”). So, while ‘&SCO-3’ still contains 
the components of ‘&SCO-2’, virtually no sub-structures are duplicated. 

Like within SCos, the directories in a transformation context accomplish the local 
identification of sub-structure components and, thus, need to be linked to “non-local” 
meta-information structures for external reference. For brevity, assume that all these 
links point directly to a ‘domain context’ although, in practice, contexts might be nested 
recursively several times, yet always following the same linkage principles. This holds 
particularly for the creation of federations of (otherwise autonomous) statistical 
databases implying, in fact, the arrangement of yet another shared context linking the 
sub-structures of the participating databases according to semantic co-incidences (Denk 
and Froeschl, 2000). 

From an application point of view, the definitional and terminological entirety 
describing the content of statistical information systems as large as national statistical 
institutes, or even supra-national statistical agencies or federations, constitute the 
essential ‘institutional context’, at least to the extent it ever becomes explicated through 
formalised entities and relationships between those. Correspondingly, meta-computing 
depends crucially on a far-going resolution of context semantics into higher-order data 
structures amenable to algorithmic transformation. While there are many initiatives and 
projects (both in academia and statistical offices) driving the formalisation of statistical 
context, proposed meta-information models so far are converging rather slowly in 
specific areas only, such as classification systems, data element documentation, or 
multidimensional (table) data descriptions (cf. http://www.epros.ed.ac.uk/metanet/ for 
an overview of recent activities in this respect). 

5  Summary and Outlook 

This paper has tried to point out possible contributions of meta-computing to the 
integration of statistical data and metadata. First and foremost, integrated statistical 
information systems can be seen as repositories purposively interlacing means of access 
through description with means of access through self-description: capturing a good 
deal of statistical semantics of data collections in terms of formal relations provides a 
convenient way to explore and analyse data bodies on condition that both descriptive 
and self-descriptive structures are co-transformed with what is so described (that is, the 
statistics data proper). Amongst the major benefits of this approach might be stated: 

• the reduction of documentation effort because, once the basic descriptive 
structures are set up, documentation is maintained (semi-) automatically 
whenever content is updated, transformed, or distributed;  
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• documentation integrity – in terms of both completeness and consistency – is 
assured due to the algebraic properties of the operators co-applied to both data 
and metadata;  

• formal documentation is amenable to algorithmic processing, enabling more 
powerful modes of information access and transformations easier to describe and 
accomplish. 

As to the latter, a particularly interesting application of meta-computing principles is 
goal-driven information processing (Froeschl, 1997): given that the content of a 
statistical database is “marked-up” using context structures as outlined, the formal 
metadata specification of a retrieval target (say, a statistical table) can be used as (4GL) 
query statement. Meta-computing commences then (i) to investigate whether the 
requested aggregate is derivable from the database, and if so, (ii) to generate a 
transformation plan for turning candidate source data into the target structure (or 
something quite similar to it). In other words, meta-computing facilitates an inferential 
calculus for the derivation of output structures from a database using purely formal 
output descriptions. 

At present, the sketched statistical meta-computing is barely more than a theoretical 
proposal, although some partial pilot implementations have been accomplished. While 
the fundamental issues of meta-computing appear more or less clarified, many practical 
and technical underpinnings are still lacking. More research is needed mainly with 
respect to canonical computable meta-information structures for statistical 
documentation, and the development of efficient implementation models. 

While still in its infancy, statistical meta-computing clearly addresses process 
optimisation and workflow improvement (as to both cost and speed) of statistical 
information processing, particularly focussing on the requirements of online databases 
providing “table-on-demand” services: responding adequately to a practically non-finite 
set of custom-tailored information requests necessitates advanced modes of metadata 
management built on meta-computing principles as proposed. 
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